• Title/Summary/Keyword: linear energy transfer

Search Result 161, Processing Time 0.024 seconds

Drying Kinetics of Onion Slices in a Hot-air Dryer

  • Lee, Jun-Ho;Kim, Hui-Jeong
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.3
    • /
    • pp.225-230
    • /
    • 2008
  • Onion slices were dehydrated in a single layer at drying air temperatures ranging from $50{\sim}70^{\circ}C$ in a laboratory scale convective hot-air dryer at an air velocity of 0.66 m/s. The effect of drying air temperature on the drying kinetic characteristics were determined. It was found that onion slices would dry within $210{\sim}460\;min$ under these drying conditions. Moisture transfer during dehydration was described by applying the Fick's diffusion model and the effective diffusivity changed between $1.345{\times}10^{-8}$ and $2.658{\times}10^{-8}\;m^2/s$. A non-linear regression procedure was used to fit 9 thin layer drying models available in the literature to the experimental drying curves. The Logarithmic model provided a better fit to the experimental drying data as compared to other models. Temperature dependency of the effective diffusivity during the hot-air drying process obeyed the Arrhenius relationship with estimated activation energy being 31.36 kJ/mol. The effect of the drying air temperature on the drying model constants and coefficients were also determined.

Review of the Existing Relative Biological Effectiveness Models for Carbon Ion Beam Therapy

  • Kim, Yejin;Kim, Jinsung;Cho, Seungryong
    • Progress in Medical Physics
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Hadron therapy, such as carbon and helium ions, is increasingly coming to the fore for the treatment of cancers. Such hadron therapy has several advantages over conventional radiotherapy using photons and electrons physically and clinically. These advantages are due to the different physical and biological characteristics of heavy ions including high linear energy transfer and Bragg peak, which lead to the reduced exit dose, lower normal tissue complication probability and the increased relative biological effectiveness (RBE). Despite the promising prospects on the carbon ion radiation therapy, it is in dispute with which bio-mathematical models to calculate the carbon ion RBE. The two most widely used models are local effect model and microdosimetric kinetic model, which are actively utilized in Europe and Japan respectively. Such selection on the RBE model is a crucial issue in that the dose prescription for planning differs according to the models. In this study, we aim to (i) introduce the concept of RBE, (ii) clarify the determinants of RBE, and (iii) compare the existing RBE models for carbon ion therapy.

우주방사선폭풍탐사선 탑재체 PD (Proton Detector, 양성자 검출기)의 개념 설계

  • Son, Jong-Dae;Lee, Yu;O, Su-Yeon;Min, Gyeong-Uk;Lee, Dae-Yeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.213.1-213.1
    • /
    • 2012
  • 우주방사선폭풍탐사선 (Space Radiation Storm probe: SRSP)에 탑재할 과학측정 장비들 중의 하나로 추진 중인 PD는 우주방사선 환경에서의 태양활동에 따른 고에너지 하전입자들 특히 proton의 에너지와 flux에 대한 정보를 획득하고 더불어 다른 고에너지 입자의 효과까지 포함하는 Linear Energy Transfer (LET)을 측정하기 위한 탑재체이다. 본 연구팀은 PD의 사양을 결정하기 위해서 GEANT4를 사용하여 전산모사를 수행하였으며, proton의 경우 우주 방사선 환경에서의 태양활동에 따른 고에너지 영역을 고려하여 0.1 ~ 1000 MeV 범위에서 전산 모사를 수행하였다. 본 연구팀은 특히 PD의 에너지 범위를 0 MeV ~ 5 MeV, 5 MeV ~ 10 MeV, 10 MeV ~ 20 MeV, 20 MeV ~ 35 MeV, 35 MeV ~ 52 MeV, 52 MeV ~ 72 MeV, 72 MeV 이상으로 총 7개의 channel를 결정하고 Al의 blocking material을 사용하여 검출하려는 에너지 범위를 조절한다. 또한 최적의 채널을 결정하여 silicon detector를 사용한 탑재체의 개념 설계를 실시하였다. 설계된 PD로부터 방사선대에서의 proton를 측정함으로써 태양기원 고에너지 입자에 대한 포획 및 쇠퇴에 대한 이해를 도울 것이다.

  • PDF

Theoretical Analysis of a Rotary Heat Exchanger Based on a Simplified Model (단순모델에 의한 회전형 열교환기 이론해석)

  • Son, Sung Gyun;Kim, Yongchan;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.409-417
    • /
    • 2015
  • A simplified rotary heat-exchanger model was developed with an assumption of a linear temperature distribution along the flow direction. Based on the model, the exact fluid solution and solid temperature variations were obtained and verified from a comparison with previous numerical studies. The heat transfer in the rotary heat exchanger was investigated using the theoretical solutions. The heat exchanger's effectiveness was shown to be saturated, with a rotational-speed increase that is higher than a critical value that is solely dependent on the thermal capacity of the solid matrix but independent of the fluid flow rate; the saturated value of the effectiveness was determined only by the NTU of the heat exchanger. Where the thermal diffusivity of the solid matrix is so slight that the thermal penetration depth becomes smaller than the matrix thickness, the effective thermal capacity of the solid matrix decreased according to the penetration depth.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.

Dependence of Electronic Spectra on the Degree of Conjugation in Organocobalt(Ⅲ) Complexes (공액도에 따른 유기코발트 착화합물의 전자스펙트럼에 관한 연구)

  • Hye Kyung Seo;Chan Ah Bong;Young Ae Hwang Park
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.1047-1052
    • /
    • 1993
  • The electronic spectra of enzyme-model organocobalt(Ⅲ) complexes containing completely or partially conjugated macrocyclic ligands were measured in various solvents to investigate the solvent effect on the charge transfer band for the axial cobalt-carbon bond by the extent of conjugation in the equatorial macrocyclic ring; completely conjugated, $CH_3CoL,\;C_6H_5CoL,\;CNCoL,\;CH_3CoL',\;CNCoL'$, partially conjugated $CH_3(py)Co(DH)_2, CH_3CoL"$, unconjugated dienes, $[CH_3Co(1,4-CT)](ClO_4)_2$, and open ring, $CH_3Co(salen)$. The position of the charge transfer band which corresponds to the cobalt-carbon bond was shifted to a shorter wavelength as the polarity of solvent increased and the transition energy $(E_T)$ had a linear relationship with solvent polarity parameter, Z-value, only in the case of completely conjugated system. However, the linear correlation between $E_T$and Z was not observed for partially conjugated and open ring systems.

  • PDF

Improvement of Efficiency in $\pi$-Conjugated Polymer Based on Phenothiazine by Introduction of Oxadiazole Pendant as a Side Chain

  • Choi, Ji-Young;Lee, Bong;Kim, Joo-Hyun;Lee, Kye-Hwan
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.319-324
    • /
    • 2009
  • A new $\pi$-conjugated polymer, poly[(2-methoxy-(5-(2-(4-oxyphenyl)-5-phenyl-1,3,4-oxadiazole)-hexyloxy))-1,4-pheny1ene-1,2-etheny1ene-alt-(10-hexyl-3,7-phenothiazine )-1,2-ethenylene] (PTOXDPPV), was synthesized by the Heck coupling reaction. The electron transporting unit, conjugated 1,3,4-oxadiazo1e (OXD), is attached on the main chain via linear 1,6-hexamethylenedioxy chain. The band gap and photoluminescence (PL) maximum of PTOXDPPV are 2.35 eV and 565 nm, respectively. These values are very close to those of po1y[(2,5-didecyloxy-1,4-phenylene-1,2-etheny1ene )-alt-(l0-hexyl-3,7-phenothiazine)-1,2-ethenylene] (PTPPV), which does not have OXD pendant. The estimated HOMO energy level of PTOXDPPV was -4.98 eV, which is very close to that of PTPPV (-4.91 eV). The maximum wavelength of EL device based on PTOXDPPV and PTPPV appeared at 587 and 577 nm, respectively. In the PL and EL spectrum, the emission from OXD pendant was not observed. This indicates that the energy transfer from OXD pendants to main chain is occurred completely. The EL device based on PTOXD-PPV (ITO/PEDOT/PTOXDPPV/AI) has an efficiency of 0.033 cd/A, which is significantly higher than the device based on PTPPV (ITO/PEDOT/PTPPV/AI) ($4.28{\times}10^{-3}\;cd/A$). From the results, we confirm that the OXD pendants in PTOXDPPV facilitate hole-electron recombination processes in the emissive layer effectively.

Effects of Deposition Method of Thermally Decomposed Platinum Counter Electrodes on the Performance of Dye-Sensitized Solar Cells (염료 감응형 태양전지 효율에 미치는 백금 상대 전극 제조공정의 영향)

  • SEO, HYUN WOO;BAEK, HYUN DUK;KIM, DONG MIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • In this work, two different platinum (Pt) counter electrodes have been prepared by spin coating a Pt solution and screen printing a Pt paste on fluorine doped tin oxide (FTO) glass substrate followed by sintering at $380^{\circ}C$ for 30 min. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) analyses of the Pt electrodes showed that the spin coated electrode was catalytically more active than the screen printed electrode. The above result agrees well with the surface morphology of the electrodes studied by atomic force microscopy (AFM) and the photovoltaic performance of the dye-sensitized solar cells (DSSCs) fabricated with the Pt electrodes. Moreover, calculation of current density-voltage (j-V) curves according to diode model with the parameters obtained from the experimental j-V curves and the EIS data of the DSSCs provided a quantitative insight about how the catalytic activity of the counter electrodes affected the photovoltaic performance of the cells. Even though the experimental situations involved in this work are trivial, the method of analyses outlined here gives a strong insight about how the catalytic activity of a counter electrode affects the photovoltaic performance of a DSSC. This work, also, demonstrates how the photovoltaic performance of DSSCs can be improved by tuning the performance of counter electrode materials.

Effect of Humidity and Flooding on the Performance of Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지의 성능에 미치는 습도와 플러딩의 영향)

  • Hwang, Byungchan;Chung, Hoi-Bum;Song, Myung-Hyun;Oh, Sung-June;Na, Il-Chai;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.302-306
    • /
    • 2017
  • Humidity affect performance and durability of proton exchange membrane fuel cell (PEMFC). High humidity of gases generally enhance the performance, but high humidity have the danger of flooding. I-V performance, linear sweep voltammetry, cyclo voltammetry, and impedance of micro-channel cell measured with change of relative humidity (RH). Flooding phenomena started at RH 70%. Ion conductivity of membrane reached maximum value at RH 80%. Maximum current density of $1,700mA/cm^2$ (at 0.6 V) was obtained at RH 80%. Therefore the effect of ion conductivity increasement was higher than that of mass transfer decrease by flooding at RH 80%.

Development of a Flow Analysis Code Using an Unstructured Grid with the Cell-Centered Method

  • Myong, Hyon-Kook;Kim, Jong-Tae
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2218-2229
    • /
    • 2006
  • A conservative finite-volume numerical method for unstructured grids with the cell-centered method has been developed for computing flow and heat transfer by combining the attractive features of the existing pressure-based procedures with the advances made in unstructured grid techniques. This method uses an integral form of governing equations for arbitrary convex polyhedra. Care is taken in the discretization and solution procedure to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. For both convective and diffusive fluxes the forms superior to both accuracy and stability are particularly adopted and formulated through a systematic study on the existing approximation ones. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are computed by using a linear reconstruction based on the divergence theorem. Momentum interpolation is used to prevent the pressure checkerboarding and a segregated solution strategy is adopted to minimize the storage requirements with the pressure-velocity coupling by the SIMPLE algorithm. An algebraic solver using iterative preconditioned conjugate gradient method is used for the solution of linearized equations. The flow analysis code (PowerCFD) developed by the present method is evaluated for its application to several 2-D structured-mesh benchmark problems using a variety of unstructured quadrilateral and triangular meshes. The present flow analysis code by using unstructured grids with the cell-centered method clearly demonstrate the same accuracy and robustness as that for a typical structured mesh.