• 제목/요약/키워드: linear encoder-like

검색결과 4건 처리시간 0.019초

고정밀 및 긴 측정범위를 위한 전기용량형 변위 센서 (A new capacitive displacement sensor for high accuracy and long range)

  • 김무진;문원규
    • 센서학회지
    • /
    • 제14권4호
    • /
    • pp.219-224
    • /
    • 2005
  • In this paper, a contact-type linear encoder-like capacitive displacement sensor (CLECDS) is proposed. It is based on the linear encoder capacitive displacement sensor that consists of two substrates with a series of conducting grating in identical size and it is used as a contact sensor of which the two substrates assembled faced to each other after coated with thin dielectric film. It was confirmed that the prototype of this sensor has resolution of about 126nm and measuring range of 20 mm in the test.

마이크로 머시닝으로 제작한 기계적 가이드를 갖는 정전용량 선형 인코더 (Micro-Machined Capacitive Linear Encoder with a Mechanical Guide)

  • 강대실;문원규
    • 센서학회지
    • /
    • 제21권6호
    • /
    • pp.440-445
    • /
    • 2012
  • Contact-type Linear Encoder-like Capacitive Displacement Sensor (CLECDiS) is a novel displacement sensor which has wide measurable range with high resolution. The sensor, however, is very sensitive to relative rotational alignment between stator and mover of the sensor as well as its displacement. In addition to, there can be some disturbances in the relative rotational alignment, so some noises occur in the sensor's output signal by the disturbances. This negative effect of the high sensitivity may become larger as increasing sensitivity. Therefore, this negative effect of the high sensitivity has to be compensated and reduced to achieve nanometer resolution of the sensor. In this study, a new type capacitive linear encoder with a mechanical guide is presented to reduce the relative rotational alignment problem. The presented method is not only to reduce the alignment problem, but also to assemble the sensor to the stage conveniently. The method is based on a new type CLECDiS that has mechanical guide autonomously. In the presented sensor, when the device is fabricated by micro-machining, the guide-rail is also fabricated on the surface of the sensor. By the direct fabrication of the guide-rail with high precision micro-machining, errors of the guide-rail can be reduced significantly. In addition, a manual yaw alignment is not required to obtain large magnitude of the output signal after the assembly of the sensor and the stage. The sensor movement is going to follow the guide-rail automatically. The prototype sensor was fabricated using the presented method, and we verify the feasibility experimentally.

0.4nm 해상도의 엔코더 타입 전기용량형 변위센서 (An 0.4nm Resolution Encoder-like Capacitive Displacement Sensor)

  • 강대실;김무진;문원규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1450-1454
    • /
    • 2007
  • A Contact-type Linear Encoder-like Capacitive Displacement Sensor (CLECDiS) has been developed to measure displacements at high accuracy within a long measurement range. In this paper, we have worked on improving the performance and reliability of the sensor. The performance increase can be done by introducing the smaller electrode patterns of $4{\mu}m$ width. In order to improve the reliability of the sensor we have changed the electrode layers from chrome-gold to chrome-gold-chrome and re-design its supporting structure. The newly-designed sensor is fabricated and tested to show that its sensitivity is $35pF/{\mu}m$, which implies that its resolution may be 0.36nm if SNR (Signal-to-Noise-Ratio) is 80.1dB. It is about ten times of that $(3.14pF/{\mu}m)$ of its previous version with 10${\mu}m$ electrodes. The total measurement range remains the same as the previous one; 15mm. The calibration experiments show its improved performance and reliability.

  • PDF

이족보행로보트의 구동부 및 제어부의 설계에 관한 연구 (A study on the driver and controller design of the biped robot)

  • 심인섭;김주한;김동준;김갑일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.871-873
    • /
    • 1995
  • The purpose of this paper is to design and construct the compact type joint driver and controller of the biped robot. This biped robot will be designed to be suitable for the practical usages and applications in the work environment, which is not plat floor, like a stairs by taking the stand-alone style that equipped all the parts except power sources. Generally, highly nonlinear motion dynamics of the biped robot is realized to linear approximations by installing a high-ratio speed reducer at each joint and dividing motions into a several piecewise linear motions, which is realized by the digital controller design techniques. This biped robot has symmetrical structure to get the stable walking ability and also the hierachical structure to control each joint as well. That is, all of the joint controllers are connected to the main controller in the composition of overall controllers. The driver and controller of each joint uses PI controller that compensate the velocity and position errors by the data of the encoder. And the signal characteristics of each joint controller forms a trapezoid speed profile which is predefined by the values of direction, maximum velocity and position.

  • PDF