• Title/Summary/Keyword: linear elastic analysis

Search Result 760, Processing Time 0.028 seconds

Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory

  • Tebboune, Wafa;Benrahou, Kouider Halim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.443-465
    • /
    • 2015
  • In this paper, an efficient and simple trigonometric shear deformation theory is presented for thermal buckling analysis of functionally graded plates. It is assumed that the plate is in contact with elastic foundation during deformation. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns. It is assumed that the mechanical and thermal non-homogeneous properties of functionally graded plate vary smoothly by distribution of power law across the plate thickness. Using the non-linear strain-displacement relations, the equilibrium and stability equations of plates made of functionally graded materials are derived. The boundary conditions for the plate are assumed to be simply supported on all edges. The elastic foundation is modelled by two-parameters Pasternak model, which is obtained by adding a shear layer to the Winkler model. The effects of thermal loading types and variations of power of functionally graded material, aspect ratio, and thickness ratio on the critical buckling temperature of functionally graded plates are investigated and discussed.

Analysis on Rehabilitation of Elbow Joint Using Elastic String (탄성 줄을 이용한 팔꿈치 관절 재활 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.196-201
    • /
    • 2016
  • This paper analyses the characteristics of a stiffness-based rehabilitation mechanism for improving the function of the elbow joint of a human. We consider an elastic string as a tool for the elbow joint rehabilitation, where the string has been modeled as a linear spring with a stiffness. For effective rehabilitation training by using such a mechanism, we need to analyse the available torque characteristics of the elbow joint according to the stiffness of the string. Through various simulations, the torque pattern and its range of the elbow joint by assigning the stiffness of the string have been identified for a pre-defined trajectory of motion of the elbow joint. Finally, we show that the specified stiffness-based rehabilitation scheme can be used for effective rehabilitation of the elbow joint.

Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.229-249
    • /
    • 2016
  • In this paper, buckling characteristics of nonhomogeneous functionally graded (FG) nanobeams embedded on elastic foundations are investigated based on third order shear deformation (Reddy) without using shear correction factors. Third-order shear deformation beam theory accounts for shear deformation effects by a parabolic variation of all displacements through the thickness, and verifies the stress-free boundary conditions on the top and bottom surfaces of the FG nanobeam. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam in deformation, which acts in tension as well as in compression. The material properties of FG nanobeam are supposed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. Comparison between results of the present work and those available in literature shows the accuracy of this method. The obtained results are presented for the buckling analysis of the FG nanobeams such as the effects of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.

Application of Direct Inelastic Design for Steel Structures (철골조를 위한 직접비탄성설계법의 적용)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.103-113
    • /
    • 2005
  • In the present study, the Direct Inelastic Design (DID) for steel structures developed in the previous study was improved to expand it applicability. The proposed design method can perform inelastic designs that address the design characteristics of steel structures: Group member design, discrete member sizes, variation of moment-carrying capacity according to axial force, connection types, and multiple design criteria and load conditions. The design procedure for the proposed method was established, and a computer program incorporating the design procedure was developed. The design results from the conventional elastic method and the DID were compared and verified by the existing computer program for nonlinear analysis. Compared with the conventional elastic design, the DID addressing the inelastic behavior reduced the total weight of steel members and enhanced the deformability of the structure. The proposed design method is convenient because it can directly perform inelastic design by using linear analysis for secant stiffness. Also, it can achieve structural safety and economical design by controlling deformations of the plastic hinges.

Experimental and numerical analysis of seismic behaviour for recycled aggregate concrete filled circular steel tube frames

  • Xianggang Zhang;Gaoqiang Zhou;Xuyan Liu;Yuhui Fan;Ercong Meng;Junna Yang;Yajun Huang
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.537-543
    • /
    • 2023
  • To study the seismic behavior of recycled aggregate concrete filled circular steel tube (RACFCST) frames, the seismic behavior experiment of RACFCST frame was carried out to measure the hysteresis curve, skeleton curve and other seismic behavior indexes. Moreover, based on the experimental study, a feasible numerical analysis model was established to analyze the finite element parameters of 8 RACFCST frame specimens, and the influence of different variation parameters on the seismic behavior index for RACFCST frame was revealed. The results showed that the skeleton curve of specimens under different axial compression ratios were divided into three stages: elastic stage, elastic-plastic stage and descending stage, and the descending stage was relatively stable, indicating that the specimen had stronger deformation capacity in the descending stage. With the increase of axial compression ratio, the peak bearing capacity of all specimens reduced gradually, and the reduction was less than 5%. With the decrease of beam-column linear stiffness ratio, the peak bearing capacity decreased gradually. With the decrease of yield bending moment ratio of beam-column, the peak bearing capacity decreased gradually, and the decreasing rate of peak bearing capacity gradually accelerated. In addition, compared with the axial compression ratio, the beam-column linear stiffness ratio and the yield bending moment ratio of beam-column had a more significant influence on the peak bearing capacity of RACFCST frame.

Crack Growth Life Prediction of Hollow Shaft with Circumferential Through Type Crack by Torsion (원주방향 관통형 균열을 가지는 중공축의 비틀림에 의한 균열성장수명 예측)

  • Yeonhi Kim;Jungsun Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2023
  • Power transmission shafts in rotary wing aircraft use a hollow shaft to reduce weight. We can apply linear elastic fracture mechanics to predict crack propagation behavior. This paper predicted crack growth life of a hollow shaft with a circumferential through-type crack by finite element analysis. A 2D finite element model was created by applying a torsion and forming elements considering cracks. We defined the initial crack length and performed the finite element analysis by increasing the crack length to derive stress intensity factor at crack tips. We defined the length just prior to the stress intensity factor exceeding the fracture toughness as the crack limit length. We calculated the crack limit length using a handbook and numerically integrated the crack growth rate equation to derive growth life of each crack. The growth life of each crack was compared to verify the proposed finite element analysis method.

Analysis of a cantilever bouncing against a stop according to Timoshenko beam theory

  • Tsai, Hsiang-Chuan;Wu, Ming-Kuen
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.297-306
    • /
    • 1997
  • The bouncing of a cantilever with the free end pressed against a stop can create high-frequency vibration that the Bernoulli-Euler beam theory is inadequate to solve. An analytic procedure is presented using Timoshenko beam theory to obtain the non-linear response of a cantilever supported by an elastic stop with clearance at the free end. Through a numerical example, the bouncing behavior of the Timoshenko and Bernoulli-Euler beam models are compared and discussed.

The mixed finite element for quasi-static and dynamic analysis of viscoelastic circular beams

  • Kadioglu, Fethi;Akoz, A. Yalcin
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.735-752
    • /
    • 2003
  • The quasi-static and dynamic responses of a linear viscoelastic circular beam on Winkler foundation are studied numerically by using the mixed finite element method in transformed Laplace-Carson space. This element VCR12 has 12 independent variables. The solution is obtained in transformed space and Schapery, Dubner, Durbin and Maximum Degree of Precision (MDOP) transform techniques are employed for numerical inversion. The performance of the method is presented by several quasi-static and dynamic example problems.

Analysis of Thermal Stresses Induced in Polymeric Thin Layer Due to Temperature Change (온도변화로 인해 고분자 박막에 발생하는 열응력 해석)

  • 이상순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.146-152
    • /
    • 2002
  • In this study, the singular thermal stresses induced during cooling down from high temperature to room temperature have been analyzed for the viscoelastic thin layer. The time domain boundary element method has been employed to investigate the behavor of stresses for the whole interface. Within the context of a linear viscoelastic theory, a stress singularity exists at the point where the interface between the elastic substrate and the viscoelastic thin layer intersects the free surface.

  • PDF

Advanced Finite Element Technology for Fracture Mechanics Analysis of Cracked Shells (균열 쉘의 파기역학해석을 위한 선진유한요소기법)

  • 우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.3-8
    • /
    • 1990
  • A new finite element technology based on p-version of F.E.M. is discussed with reference to its potential for application to stress intensity factor computations. In linear elastic fracture mechanics, especially cracked cylindrical shells. It is shown that the p-version nutlet is far better suited for computing the stress intensity factors than the conventional h-version models with the help of three test problems. The main advantage of this technology is that the accuracy of approximation can be established without mesh refinement or the use of special procedures.

  • PDF