• 제목/요약/키워드: linear discriminant analysis

검색결과 346건 처리시간 0.021초

지방산 조성과 선형판별분석을 활용한 유통판매 참기름의 원산지 판별 (Discrimination of the geographical origin of commercial sesame oils using fatty acids composition combined with linear discriminant analysis)

  • 김남훈;최채만;이영주;김나영;홍미선;유인실
    • 분석과학
    • /
    • 제34권3호
    • /
    • pp.134-141
    • /
    • 2021
  • GC-FID를 이용하여 유통판매 참기름 62건(국산 18건, 수입산 44건)의 지방산 조성을 확인 하였으며 참기름의 원산지 판별을 위해 주요지방산 5 종(C16:0, C18:0, C18:1, C18:2, C18:3)에 대하여 다변량 통계분석인 주성분 분석과 선형판별 분석을 실시하였다. t-검정 결과 국산과 수입산 참기름에서 C16:0, C18:0, C18:1, 및 C18:2 함량 간에 유의적인 차이가 확인되었으며, C16:0과 C18:1 및 C18:2의 상관성은 국산과 수입산 참기름에서 서로 반대되는 경향을 보였다. 실험법 검증을 위한 회수율 검정 결과 82.8~100.2 %의 양호한 결과를 얻을 수 있었다. 주성분 분석을 통해 참기름의 원산지에 따른 집단 분포 양상의 차이를 시각적으로 확인하였다. 참기름 시료를 원산지에 따라 두 집단으로 분류하기 위해 선형판별 분석을 실시한 결과 국산은 88.9 %, 수입산은 100 %의 판별 정확성을 보였다. C16:0 (Wilks λ = 0.361)과 C18:1 (Wilks λ= 0.637)은 참기름 원산지 판별에 가장 판별력이 큰 지방산으로 확인되었다. 전체 62건의 참기름 중 60건이 정확하게 분류되어 96.8 %의 예측정확성을 보였으며 이러한 결과는 상기의 접근법이 참기름의 원산지를 판별하고 분류하는 유용한 툴로서 활용될 수 있음을 보여준다.

퍼지 k-Nearest Neighbors 와 Reconstruction Error 기반 Lazy Classifier 설계 (Design of Lazy Classifier based on Fuzzy k-Nearest Neighbors and Reconstruction Error)

  • 노석범;안태천
    • 한국지능시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.101-108
    • /
    • 2010
  • 본 논문에서는 퍼지 k-NN과 reconstruction error에 기반을 둔 feature selection을 이용한 lazy 분류기 설계를 제안하였다. Reconstruction error는 locally linear reconstruction의 평가 지수이다. 새로운 입력이 주어지면, 퍼지 k-NN은 local 분류기가 유효한 로컬 영역을 정의하고, 로컬 영역 안에 포함된 데이터 패턴에 하중 값을 할당한다. 로컬 영역과 하중 값을 정의한 우에, feature space의 차원을 감소시키기 위하여 feature selection이 수행된다. Reconstruction error 관점에서 우수한 성능을 가진 여러 개의 feature들이 선택 되어 지면, 다항식의 일종인 분류기가 하중 최소자승법에 의해 결정된다. 실험 결과는 기존의 분류기인 standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees와 비교 결과를 보인다.

Bankruptcy predictions for Korea medium-sized firms using neural networks and case based reasoning

  • Han, Ingoo;Park, Cheolsoo;Kim, Chulhong
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1996년도 추계학술대회발표논문집; 고려대학교, 서울; 26 Oct. 1996
    • /
    • pp.203-206
    • /
    • 1996
  • Prediction of firm bankruptcy have been extensively studied in accounting, as all stockholders in a firm have a vested interest in monitoring its financial performance. The objective of this paper is to develop the hybrid models for bankruptcy prediction. The proposed hybrid models are two phase. Phase one are (a) DA-assisted neural network, (b) Logit-assisted neural network, and (c) Genetic-assisted neural network. And, phase two are (a) DA-assisted Case based reasoning, and (b) Genetic-assisted Case based reasoning. In the variables selection, We are focusing on three alternative methods - linear discriminant analysis, logit analysis and genetic algorithms - that can be used empirically select predictors for hybrid model in bankruptcy prediction. Empirical results using Korean medium-sized firms data show that hybrid models are very promising neural network models and case based reasoning for bankruptcy prediction in terms of predictive accuracy and adaptability.

  • PDF

아두이노와 Emotiv Epoc을 이용한 정상상태시각유발전위 (SSVEP) 기반의 로봇 제어 (Robot Control based on Steady-State Visual Evoked Potential using Arduino and Emotiv Epoc)

  • 유제훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제25권3호
    • /
    • pp.254-259
    • /
    • 2015
  • 본 논문은 BCI(Brain Computer Interface)기반의 정상상태시각유발전위(SSVEP : Steady-State Visual Evoked Potential)를 사용하여 무선 로봇 제어를 위한 시스템을 제안하였다. CPSD(Cross Power Spectral Density)를 사용하여 전극의 신호를 분석하였다. 또한 분류를 위해서 LDA(Linear Discriminant Analysis)와 SVM(Support Vector Machine)을 사용하였다. 그 결과 피험자들의 평균 분류율은 약 70%로 나타났다. 로봇제어의 경우 뇌파의 값을 분류하여 나타난 결과 값으로 로봇이 움직일 수 있도록 구현하였고, 블루투스 통신을 이용하여 로봇제어를 수행하였다.

MULTISPECTRAL IMAGING APPLICATION FOR FOOD INSPECTION

  • Park, Bosoon;Y.R.Chen
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.755-764
    • /
    • 1996
  • A multispectral imaging system with selected wavelength optical filter was demonstrated feasible for food safety inspection. Intensified multispectral images of carcasses were obtained with visible/near-infrared optical filters(542-847 nm wavelengths) and analyzed. The analysis of textural features based on co-occurrence matrices was conducted to determine the feasibility of a multispectral image analyses for discriminating unwholesome poultry carcasses from wholesome carcasses. The mean angular second moment of the wholesome carcasses scanned at 542 nm wavelength was lower than that of septicemic (P$\leq$0.0005) and cadaver(P$\leq$0.0005) carcasses. On the other hand, for the carcasses scanned at 700nm wavelength , the feature values of septicemic and cadaver carcasses were significantly (P$\leq$0.0005) different from wholesome carcasses. The discriminant functions for classifying poultry carcasses into three classes (wholesome, septicemic , cadaver) were developed using linear and quadr tic covariance matrix analysis method. The accuracy of the quadratic discriminant models, expressed in rates of correct classification, were over 90% for the classification of wholesome, septicemic, and cadaver carcasses when textural features from the spectral images scanned at the wavelength of 542 and 700nm were utilized.

  • PDF

2D-MELPP: A two dimensional matrix exponential based extension of locality preserving projections for dimensional reduction

  • Xiong, Zixun;Wan, Minghua;Xue, Rui;Yang, Guowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.2991-3007
    • /
    • 2022
  • Two dimensional locality preserving projections (2D-LPP) is an improved algorithm of 2D image to solve the small sample size (SSS) problems which locality preserving projections (LPP) meets. It's able to find the low dimension manifold mapping that not only preserves local information but also detects manifold embedded in original data spaces. However, 2D-LPP is simple and elegant. So, inspired by the comparison experiments between two dimensional linear discriminant analysis (2D-LDA) and linear discriminant analysis (LDA) which indicated that matrix based methods don't always perform better even when training samples are limited, we surmise 2D-LPP may meet the same limitation as 2D-LDA and propose a novel matrix exponential method to enhance the performance of 2D-LPP. 2D-MELPP is equivalent to employing distance diffusion mapping to transform original images into a new space, and margins between labels are broadened, which is beneficial for solving classification problems. Nonetheless, the computational time complexity of 2D-MELPP is extremely high. In this paper, we replace some of matrix multiplications with multiple multiplications to save the memory cost and provide an efficient way for solving 2D-MELPP. We test it on public databases: random 3D data set, ORL, AR face database and Polyu Palmprint database and compare it with other 2D methods like 2D-LDA, 2D-LPP and 1D methods like LPP and exponential locality preserving projections (ELPP), finding it outperforms than others in recognition accuracy. We also compare different dimensions of projection vector and record the cost time on the ORL, AR face database and Polyu Palmprint database. The experiment results above proves that our advanced algorithm has a better performance on 3 independent public databases.

클래스가 부가된 커널 주성분분석을 이용한 비선형 특징추출 (Nonlinear Feature Extraction using Class-augmented Kernel PCA)

  • 박명수;오상록
    • 전자공학회논문지SC
    • /
    • 제48권5호
    • /
    • pp.7-12
    • /
    • 2011
  • 본 논문에서는 자료패턴을 분류하기에 적합한 특징을 추출하는 방법인, 클래스가 부가된 커널 주성분분석(class-augmented kernel principal component analysis)를 새로이 제안하였다. 특징추출에 널리 이용되는 부분공간 기법 중, 최근 제안된 클래스가 부가된 주성분분석(class-augmented principal component analysis)은 패턴 분류를 위한 특징을 추출하기 위해 이용되는 선형분류분석(linear discriminant analysis)등에 비해 정확한 특징을 계산상의 문제 없이 추출할 수 있는 기법이다. 그러나, 추출되는 특징은 입력의 선형조합으로 제한되어 자료에 따라 적절한 특징을 추출하기 어려운 경우가 발생한다. 이를 해결하기 위하여 클래스가 부가된 주성분분석에 커널 트릭을 적용하여 비선형 특징을 추출할 수 있는 새로운 부분공간 기법으로 확장하고, 실험을 통하여 성능을 평가하였다.

Hybrid Pattern Recognition Using a Combination of Different Features

  • Choi, Sang-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권11호
    • /
    • pp.9-16
    • /
    • 2015
  • We propose a hybrid pattern recognition method that effectively combines two different features for improving data classification. We first extract the PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) features, both of which are widely used in pattern recognition, to construct a set of basic features, and then evaluate the separability of each basic feature. According to the results of evaluation, we select only the basic features that contain a large amount of discriminative information for construction of the combined features. The experimental results for the various data sets in the UCI machine learning repository show that using the proposed combined features give better recognition rates than when solely using the PCA or LDA features.