• Title/Summary/Keyword: linear differential systems

Search Result 258, Processing Time 0.026 seconds

Optimal Control of Nonlinear Systems Using Block Pulse Functions (블럭펄스 함수를 이용한 비선형 시스템의 최적제어)

  • Jo, Yeong-Ho;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.111-116
    • /
    • 2000
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on tow steps. The first step transforms optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPB(two point boundary condition problem) is solved by algebraic equations instead of differential equations using BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems. In computer simulation, the algorithm was verified through the optimal control design of Van del pole system and Volterra Predatory-prey system.

  • PDF

A Study on the Method for Dynamic Response Analysis in Frequency Domain of an Offshore Wind Turbine by Linearization of Equations of Motion for Multibody (다물체계 운동 방정식 선형화를 통한 해상 풍력 발전기 동적 거동의 주파수 영역 해석 방법에 관한 연구)

  • Ku, Namkug;Roh, Myung-Il;Ha, Sol;Shin, Hyun-Kyoung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.1
    • /
    • pp.84-92
    • /
    • 2015
  • In this study, we describe a method to analysis dynamic behavior of an offshore wind turbine in the frequency domain and expected effects of the method. An offshore wind turbine, which is composed of platform, tower, nacelle, hubs, and blades, can be considered as multibody systems. In general, the dynamic analysis of multibody systems are carried out in the time domain, because the equations of motion derived based on the multibody dynamics are generally nonlinear differential equations. However, analyzing the dynamic behavior in time domain takes longer than in frequency domain. In this study, therefore, we describe how to analysis the system multibody systems in the frequency domain. For the frequency domain analysis, the non-linear differential equations are linearized using total derivative and Taylor series expansions, and then the linearized equations are solved in time domain. This method was applied to analysis of double pendulum system for the verification of its effectiveness, and the equations of motion for the offshore wind turbine was derived with assuming that the wind turbine is rigid multibody systems. Using this method, the dynamic behavior analysis of the offshore wind turbine can be expected to take less time.

Free and transient responses of linear complex stiffness system by Hilbert transform and convolution integral

  • Bae, S.H.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.753-771
    • /
    • 2016
  • This paper addresses the free and transient responses of a SDOF linear complex stiffness system by making use of the Hilbert transform and the convolution integral. Because the second-order differential equation of motion having the complex stiffness give rise to the conjugate complex eigen values, its time-domain analysis using the standard time integration scheme suffers from the numerical instability and divergence. In order to overcome this problem, the transient response of the linear complex stiffness system is obtained by the convolution integral of a green function which corresponds to the unit-impulse free vibration response of the complex system. The damped free vibration of the complex system is theoretically derived by making use of the state-space formulation and the Hilbert transform. The convolution integral is implemented by piecewise-linearly interpolating the external force and by superimposing the transient responses of discretized piecewise impulse forces. The numerical experiments are carried out to verify the proposed time-domain analysis method, and the correlation between the real and imaginary parts in the free and transient responses is also investigated.

Steady-State Solution of Forced Symmetric Piecewise-Linear Oscillator (强制 對稱 偏的 線型 振動子의 定常解)

  • 최연선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.583-594
    • /
    • 1989
  • The strong nonliner dynamic behavior of mechanical systems in the presence of clearances are studied. The nonlinearity is induced from the assumed symmetric piecewise-linear characteristics for stiffness and damping by the contact and uncontact. Based on Stoker's assertion concering the reasoning beyond the occurrence of subharmonics, the nonlinear differential equation is converted to four nonlinear algebraic equations form the boundary conditions at the contact points. For a single contact per half exciting period, under the assumption of symmetric response, the steady-state solutions obtained are in agreement with those of numerical integration. Also a nondimen-sionalized formulation is made for the purpose of parametric studies.

Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings

  • Hosseini, Seyyed A.H.;Khosravi, Farshad
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • Rotating systems concern with torsional vibration, and it should be considered in vibration analysis. To do this, the time-dependent torsional vibrations in a single-walled carbon nanotube (SWCNT) under the linear and harmonic external torque, are investigated in this paper. Eringen's nonlocal elasticity theory is considered to demonstrate the nonlocality and constitutive relations. Hamilton's principle is established to derive the governing equation of motion and consequently related boundary conditions. An analytical method, called the Galerkin method, is utilized to discretize the driven differential equations. Linear and harmonic torsional loads, along with determined amplitude, are applied to the SWCNT as the external torques. SWCNT is considered under the clamped-clamped end supports. In free vibration, analysis of small scale effect reveals the capability of natural frequencies in different modes, and this results desirably are in coincidence with another study. The forced torsional vibration in the time domain, especially for carbon nanotubes, has not been done before in the previous works. The previous forced studies were devoted to the transverse vibrations. It should be emphasized that the dynamical analysis of torsion is novel, workable, and at the beginning of the path. The variations of nonlocal parameter, CNT's thickness, and the influence of excitation frequency on time-dependent angular displacement and nondimensional angular displacement are investigated in the context.

Analytical and multicoupled methods for optimal steady-state thermoelectric solutions

  • Moreno-Navarro, Pablo;Perez-Aparicio, Jose L.;Gomez-Hernandez, J.J.
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.151-166
    • /
    • 2022
  • Peltier cells have low efficiency, but they are becoming attractive alternatives for affordable and environmentally clean cooling. In this line, the current article develops closed-form and semianalytical solutions to improve the temperature distribution of Bi2Te3 thermoelements. From the distribution, the main objective of the current work-the optimal electric intensity to maximize cooling-is inferred. The general one-dimensional differential coupled equation is integrated for linear and quadratic geometry of thermoelements, under temperature constant properties. For a general shape, a piece-wise solution based on heat flux continuity among virtual layers gives accurate analytical solutions. For variable properties, another piece-wise solution is developed but solved iteratively. Taking advantage of the formulae, the optimal intensity is directly derived with a minimal computational cost; its value will be of utility for more advanced designs. Finally, a parametric study including straight, two linear, barrel, hourglass and vase geometries is presented, drawing conclusions on how the shape of the thermoelement affects the coupled phenomena. A specially developed coupled and non-linear finite element research code is run taking into account all the materials of the cell and using symmetries and repetitions. These accurate results are used to validate the analytical ones.

Analytical approximate solution for Initial post-buckling behavior of pipes in oil and gas wells

  • Yu, Yongping;Sun, Youhong;Han, Yucen
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.155-163
    • /
    • 2012
  • This paper presents analytical approximate solutions for the initial post-buckling deformation of the pipes in oil and gas wells. The governing differential equation with sinusoidal nonlinearity can be reduced to form a third-order-polynomial nonlinear equation, by coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. The linearization is performed prior to proceeding with harmonic balancing thus resulting in a set of linear algebraic equations instead of one of non-linear algebraic equations, unlike the classical method of harmonic balance. We are hence able to establish analytical approximate solutions. The approximate formulae for load along axis, and periodic solution are established for derivative of the helix angle at the end of the pipe. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

Convergence Characteristics of the Crank-Nicolson-Galerkin Scheme for Linear Parabolic Systems

  • Cho, Jin-Rae;Ha, Dae-Yul;Kim, Tae-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1264-1275
    • /
    • 2002
  • This paper is concerned with the investigation on the stability and convergence characteristics of the Crank-Nicolson-Galerkin scheme that is widely being employed for the numerical approximation of parabolic-type partial differential equations. Here, we present the theoretical analysis on its consistency and convergence, and we carry out the numerical experiments to examine the effect of the time-step size △t on the h- and P-convergence rates for various mesh sizes h and approximation orders P. We observed that the optimal convergence rates are achieved only when △t, h and P are chosen such that the total error is not affected by the oscillation behavior. In such case, △t is in linear relation with DOF, and furthermore its size depends on the singularity intensity of problems.

Numerical Robust Stability Analysis and Design of Fuzzy Feedback Linearization Regulator

  • Park, Chang-Woo;Hyun, Chang-Ho;Kim, Euntai;Park, Mignon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1220-1223
    • /
    • 2002
  • In this paper, numerical robust stability analysis method and its design are presented. L$_2$robust stability of the fuzzy system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linarization control gains is proposed.

  • PDF

GLOBAL ROBUST STABILITY OF TIME-DELAY SYSTEMS WITH DISCONTINUOUS ACTIVATION FUNCTIONS UNDER POLYTOPIC PARAMETER UNCERTAINTIES

  • Wang, Zengyun;Huang, Lihong;Zuo, Yi;Zhang, Lingling
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.89-102
    • /
    • 2010
  • This paper concerns the problem of global robust stability of a time-delay discontinuous system with a positive-defined connection matrix under polytopic-type uncertainty. In order to give the stability condition, we firstly address the existence of solution and equilibrium point based on the properties of M-matrix, Lyapunov-like approach and the theories of differential equations with discontinuous right-hand side as introduced by Filippov. Second, we give the delay-independent and delay-dependent stability condition in terms of linear matrix inequalities (LMIs), and based on Lyapunov function and the properties of the convex sets. One numerical example demonstrate the validity of the proposed criteria.