• 제목/요약/키워드: linear beam theory

검색결과 229건 처리시간 0.023초

선박의 비선형 유체력을 고려한 파랑중 동적 강도 해석법에 관한 연구 (A Study on the Dynamic Strength Analysis of the Hull Girder Among Waves Considering Non-Linear Hydrodynamic forces)

  • 신구균;김사수;손성완
    • 대한조선학회논문집
    • /
    • 제29권4호
    • /
    • pp.152-172
    • /
    • 1992
  • 대파고 파랑중을 항해하는 선박은 큰 선체 운동으로 인하여 수면하 단면 형상이 시시각각 크게 변하므로 자유 표면 조건, 물체 표면 조건의 비선형성에 의한 비선형 유체력의 영향이 무시될 수 없게 된다. 경우에 따라서는 선저가 파면으로부터 충격력을 받는 슬래밍 현상과 선수가 파도를 뒤집어 쓰는 청파 현상등과 같은 충격적 유체력이 선체에 가해지는 등 복잡한 문제가 발생하게 된다. 본 연구에서는 선체를 가변 단면보의 탄성체로 이상화하여 파랑중 선체 거동을 박육 단면보 이론에 의해 정식화하고 파랑 하중으로는 수면하 단면 형상 변화에 따른 비선형 유체력과 momentum slamming이론을 이용한 유체 충격력을 고려하여 대파고 파랑 중 탄성체인 선체의 응답을 추정하는 해석 기법을 개발하여 이를 기존의 실험결과와 비교 그 타당성을 확인하고, 이의 응용으로 본 기법에 의하여 4만톤급 정유 운반선에 적용하여 정면파 및 사파중에서 파고, 파장, 선속을 파라미터로 한 수치 계산을 수행하고 여러가지 파라미터 변화에 대한 선체 구조의 동적 강도 응답 특성을 계통적으로 분석하여 보았다. 본 연구에서 개발된 동적강도 해석법은 대파고 중에서 유체력의 비선형성 및 유체 충격력까지 고려한 해석기법이므로 신구조 방식 선박에 대한 직접 설계법의 확립 뿐만 아니라 슬래밍 등에 의한 선체 절손 사고의 원인 규명에도 유용하게 적용할 수 있을 것으로 사료된다.

  • PDF

The refined theory of 2D quasicrystal deep beams based on elasticity of quasicrystals

  • Gao, Yang;Yu, Lian-Ying;Yang, Lian-Zhi;Zhang, Liang-Liang
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.411-427
    • /
    • 2015
  • Based on linear elastic theory of quasicrystals, various equations and solutions for quasicrystal beams are deduced systematically and directly from plane problem of two-dimensional quasicrystals. Without employing ad hoc stress or deformation assumptions, the refined theory of beams is explicitly established from the general solution of quasicrystals and the Lur'e symbolic method. In the case of homogeneous boundary conditions, the exact equations and exact solutions for beams are derived, which consist of the fourth-order part and transcendental part. In the case of non-homogeneous boundary conditions, the exact governing differential equations and solutions under normal loadings only and shear loadings only are derived directly from the refined beam theory, respectively. In two illustrative examples of quasicrystal beams, it is shown that the exact or accurate analytical solutions can be obtained in use of the refined theory.

Vibration analysis thermally affected viscoelastic nanosensors subjected to linear varying loads

  • Ebrahimi, Farzad;Babaei, Ramin;Shaghaghi, Gholam Reza
    • Advances in nano research
    • /
    • 제6권4호
    • /
    • pp.399-422
    • /
    • 2018
  • Unwanted vibration is an issue in many industrial systems, especially in nano-devices. There are many ways to compensate these unwanted vibrations based on the results of the past researches. Elastic medium and smart material etc. are effective methods to restrain unnecessary vibration. In this manuscript, dynamic analysis of viscoelastic nanosensor which is made of functionally graded (FGM) nanobeams is investigated. It is assumed that, the shaft is flexible. The system is modeled based on Timoshenko beam theory and also environmental condition, external linear varying loads and thermal loading effect are considered. The equations of motion are extracted by using energy method and Hamilton principle to describe the translational and shear deformation's behavior of the system. Governing equations of motion are extracted by supplementing Eringen's nonlocal theory. Finally vibration behavior of system especially the frequency of system is developed by implementation Semi-analytical differential transformed method (DTM). The results are validated in the researches that have been done in the past and shows good agreement with them.

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • 제19권3호
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.

합성보의 부착슬립 효과를 고려한 유한요소 기반의 수치해석모델 (FE Based Numerical Model to Consider Bond-slip Effect in Composite Beams)

  • 곽효경;황진욱
    • 한국전산구조공학회논문집
    • /
    • 제23권1호
    • /
    • pp.95-110
    • /
    • 2010
  • 본 논문에서는 합성보의 부착슬립 효과를 고려할 수 있는 유한요소 수치모델을 제안하고자 한다. 전단연결재가 설치된 슬래브와 거더 경계에서 선형 전단력-슬립 관계를 가정하여, 부착슬립 거동을 해석할 수 있는 수치모델이 구현되었다. 본 수치모델을 통하여 축 방향의 자유도를 부가하지 않고 2절점의 보 요소를 적용하여 합성보 경계에서의 슬립 거동을 고려하는 것이 가능하다. 선형 부분전단 연결이론을 토대로 한 슬립 거동의 지배방정식은 슬래브와 거더 경계에서 힘의 평형상태와 단면 내에서 상수로 가정된 곡률을 바탕으로 결정된다. 또한, 지배방정식 구성에 있어서 요소 양 절점에서의 휨 모멘트 값을 필요로 하기 때문에 유한요소 해석으로 도출되는 상수 모멘트를 요소 내에서 선형으로 분포시켰다. 제안된 수치모델을 적용한 해석결과를 기존 연구의 수치해석 결과 및 실험결과와 비교하였으며, 하중-처짐 곡선의 비교를 통하여 본 모델의 성능을 검증하였다.

THEORY AND SIMULATION OF BROADBAND ELECTROSTATIC NOISE IN THE MAGNETOTAIL

  • Kim, S.Y.
    • Journal of Astronomy and Space Sciences
    • /
    • 제11권2호
    • /
    • pp.250-272
    • /
    • 1994
  • Various plasma instabilities driven by the ion beams have been proposed in order to explain the broadband electrostatic noise (BEN) in the earth's geomagnetic tail. Ion acoustic, ion-ion two stream, and electron acoustic instabilities have been proposed. Here we consider a theoretical investigation of the generation of BEN by cold streaming ion beams in the earth's magnetotail. Linear theory analysis and particle simulation studies for the plasma sheet, which consists of warm electrons and ions as well as cold streaming ion beams, have been done. Both beam-ion acoustic and ion-ion two stream instabilities easily occur when the beam and warm electron temperature ratio, $T_b/T_e$ is small enough. The numerical simulation results confirm the existence of broadband electrostatic noise whose frequency is ranged from $\omega$=0 to $\omega$$\omega_{pe}$.

  • PDF

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

A unified formulation for modeling of inhomogeneous nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.369-377
    • /
    • 2018
  • In this article, buckling and free vibration of functionally graded (FG) nanobeams resting on elastic foundation are investigated by developing various higher order beam theories which capture shear deformation influences through the thickness of the beam without the need for shear correction factors. The elastic foundation is modeled as linear Winkler springs as well as Pasternak shear layer. The material properties of FG nanobeam are supposed to change gradually along the thickness through the Mori-Tanaka model. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. From Hamilton's principle, the nonlocal governing equations of motion are derived and then solved applying analytical solution. To verify the validity of the developed theories, the results of the present work are compared with those available in literature. The effects of shear deformation, elastic foundation, gradient index, nonlocal parameter and slenderness ratio on the buckling and free vibration behavior of FG nanobeams are studied.

Nonlinear thermal vibration of FGM beams resting on nonlinear viscoelastic foundation

  • Alimoradzadeh, M.;Akbas, S.D.
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.557-567
    • /
    • 2022
  • Nonlinear free vibration analysis of a functionally graded beam resting on the nonlinear viscoelastic foundation is studied with uniform temperature rising. The non-linear strain-displacement relationship is considered in the finite strain theory. The governing nonlinear dynamic equation is derived based on the finite strain theory with using of Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The influences of temperature rising, material distribution parameter, nonlinear viscoelastic foundation parameters on the nonlinear free response and phase trajectory are investigated. In this paper, it is aimed that a contribution to the literature for nonlinear thermal vibration solutions of a functionally graded beam resting on the nonlinear viscoelastic foundation by using of multiple time scale method.

다절점 케이블요소를 이용한 IPS 시스템의 비선형 해석 (Nonlinear Analysis of IPS System using the multi-noded cable element)

  • 이준석;김문영;한만엽;김성보;김낙경
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.623-630
    • /
    • 2006
  • In this paper, a geometric nonlinear analysis procedure of beam-column element including multi-noded cable element is presented. For this, first a stiffness matrix about beam-column element which considers the second effect of initial force supposing the curved shape at each time step with Hermitian polynomials as the shape function is derived and second, tangent stiffness matrix about multi-noded cable element being too. To verify geometric nonlinearity of this newly developed multi-noded cable-truss element, IPS(Innovative Prestressed Support) system using this theory is analysed by geometric nonlinear method and the results are compared with those by linear analysis.

  • PDF