• Title/Summary/Keyword: line-of-sight guidance law

Search Result 39, Processing Time 0.022 seconds

Impact Angle Control for Non-maneuvering Target with Look Angle Measurements and Line of Sight (지향각, 시선각 정보를 이용한 이동표적의 충돌각 제어)

  • Park, Jang-Seong;Lee, Dong-Hee;Park, Sang-Hyuk;Kim, Yoon-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.508-516
    • /
    • 2019
  • In this paper, we propose a guidance law to control Impact Angle in consideration of look angle limit of the missile with strapdown seeker on the non-maneuvering target. The proposed law is based on sliding mode algorithm and generates acceleration commands using look angle and line of sight information provided by the strapdown seeker and navigation system. And, target velocity and target path angle are provided by like TADS (Target Acquisition and Designation System) at launch time. We can confirm that the target interception and impact angle control are possible through the convergence of the proposed sliding surface. In addition, it is possible to confirm that the sign of derivative result of the look angle at the maximum and minimum look angle is opposite to the sign of the look angle, so the look angle limit is not exceeded.

Consensus of Leader-Follower Multi-Vehicle System

  • Zhao, Enjiao;Chao, Tao;Wang, Songyan;Yang, Ming
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.522-534
    • /
    • 2017
  • According to the characteristics of salvo attack for the multiple flight vehicles (MFV), the design of cooperative guidance law can be converted into the consensus problem of multi-vehicle system through the concept of multi-agent cooperative control. The flight vehicles can be divided into leader and followers depending on different functions, and the flight conditions of leader are independent of the ones of followers. The consensus problem of leader-follower multi-vehicle system is researched by graph theory, and the consensus protocol is also presented. Meanwhile, the finite time guidance law is designed for the flight vehicles via the finite time control method, and the system stability is also analyzed. Whereby, the guidance law can guarantee the line of sight (LOS) angular rates converge to zero in finite time, and hence the cooperative attack of the MFV can be realized. The effectiveness of the designed cooperative guidance method is validated through the simulation with a stationary target and a moving target, respectively.

A Missile Guidance Law Based on Sontag's Formula to Intercept Maneuvering Targets

  • Ryoo, Chang-Kyung;Kim, Yoon-Hwan;Tahk, Min-Jea;Choi, Kee-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.397-409
    • /
    • 2007
  • In this paper, we propose a nonlinear guidance law for missiles against maneuvering targets. First, we derive the equations of motion described in the line-of-sight reference frame and then we define the equilibrium subspace of the nonlinear system to guarantee target interception within a finite time. Using Sontag's formula, we derive a nonlinear guidance law that always delivers the state to the equilibrium subspace. If the speed of the missile is greater than that of the target, the proposed law has global capturability in that, under any initial launch conditions, the missile can intercept the maneuvering target. The proposed law also minimizes the integral cost of the control energy and the weighted square of the state. The performance of the proposed law is compared with the augmented proportional navigation guidance law by means of numerical simulations of various initial conditions and target maneuvers.

Missile closing velocity estimation based on the LOS rate measurement (수동형 탐색기의 시선 각속도 측정을 이용한 접근속도 추정)

  • 탁민제;류동영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.268-273
    • /
    • 1991
  • Missile and target closing velocity is used in the proportional navigation(PN) missile guidance loop. But it is difficult to estimate the closing velocity when passive seeker is used and only the Line-of-Sight(LOS) rate is available in the guidance loop. In this study, new closing velocity estimation method is developed. This method uses LOS rate measurement only and uses some characteristics of PN guidance law. The Lyapunov method is used to analyze the stability of the developed estimation method.

  • PDF

Aircraft Collision-Avoidance/Guidance Strategy in Dynamic Environments for Planar Flight (2차원 평면에서 이동장애물에 대한 항공기의 유도/회피기동 연구)

  • Rhee, Ihn-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.69-75
    • /
    • 2004
  • An avoidance/guidance problem of an aircraft against moving obstacle is considered in two dimensional space. The aircraft is modelled as a point mass flying with constant speed. The lateral acceleration is assumed the control input. Artificial potential functions are applied to the terminal point and moving obstacles in order that repulsive forces and an attractive force are produced by the obstacles and the terminal point respectively. A real time guidance/avoidance law is proposed by using the potential forces and relative velocity. The guidance law for a logarithm potential function results the well-known proportional navigation law. The avoidance control command is inverse proportional to the time-to-go to the obstacle and turns the aircraft toward the negative direction of the line-of-sight change. The performance of the proposed guidance/avoidance law is verified with simulations.

Linear Velocity Control of the Mobile Robot with the Vision System at Corridor Navigation (비전 센서를 갖는 이동 로봇의 복도 주행 시 직진 속도 제어)

  • Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.896-902
    • /
    • 2007
  • This paper proposes a vision-based kinematic control method for mobile robots with camera-on-board. In the previous literature on the control of mobile robots using camera vision information, the forward velocity is set to be a constant, and only the rotational velocity of the robot is controlled. More efficient motion, however, is needed by controlling the forward velocity, depending on the position in the corridor. Thus, both forward and rotational velocities are controlled in the proposed method such that the mobile robots can move faster when the comer of the corridor is far away, and it slows down as it approaches the dead end of the corridor. In this way, the smooth turning motion along the corridor is possible. To this end, visual information using the camera is used to obtain the perspective lines and the distance from the current robot position to the dead end. Then, the vanishing point and the pseudo desired position are obtained, and the forward and rotational velocities are controlled by the LOS(Line Of Sight) guidance law. Both numerical and experimental results are included to demonstrate the validity of the proposed method.

Implementation of Ship Trajectory Following Algorithm

  • Wonjin Choi;Seung-Hwan Jun
    • Journal of Navigation and Port Research
    • /
    • v.47 no.2
    • /
    • pp.49-56
    • /
    • 2023
  • As interest in autonomous ships continues to grow, researchers around the world are dedicating themselves to the development of relevant technologies. However, these technologies are not yet perfect. Several technical problems remain unresolved. To address these problems, this study presents the implementation of a ship trajectory algorithm for group navigation, where followers can navigate by following the trajectory of a leader. The algorithm works by storing the leader's trajectory as a follow-point and by calculating the azimuth using the line-of-sight guidance law to reach it. A course-keeping controller based on PD control is implemented to follow the target course and a speed control algorithm is designed to prevent collisions. Sea experiments were conducted using 1 m class small RC model boats to verify the proposed algorithm. The follower successfully navigated by following the leader's trajectory and maintained the designated distance to the forward boat. This study is significant in that it implements an algorithm for the follower to follow the trajectory of the leader rather than directly following it as in conventional methods, and verifies it through sea experiments.

Design and Flight Test of Path Following System for an Unmanned Airship (무인 비행선의 자동 경로 추종 시스템 개발 및 비행시험)

  • Jung, Kyun-Myung;Sung, Jae-Min;Kim, Byoung-Soo;Je, Jeong-Hyeong;Lee, Sung-Gun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.498-509
    • /
    • 2010
  • In this paper, a waypoint guidance law Line Tracking algorithm is designed for testing an Unmanned Airship. In order to verify, we develop an autonomous flight control and test system of unmanned airship. The flight test system is composed FCC (Flight Control Computer), GCS (Ground Control System), Autopilot & Guidance program, GUI (Graphic User Interface) based analysis program, and Test Log Sheet for the management of flight test data. It contains flight test results of single-path & multi-path following, one point continuation turn, LOS guidance, and safe mode for emergency.

Adaptive intermittent maneuvers for intercept performance improvement of homing missile with passive seeker (수동형 탐색기를 장착한 호우밍 미사일의 요격성능 향상을 위한 적응 단속 기동)

  • Tark, Min-Jea;Ryu, Hyeok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.469-474
    • /
    • 1990
  • The implementation of modern guidance law derived from optimal control theory requires accurate current states of target, for example, position, velocity and acceleration etc. But there is no sensors that measure the target states directly. So they are estimated from measurable data. For atmospheric missile engagement, direct application of the modern guidance laws may result In deterioration of Intercept performance because of poor observability associated with angles only-measurements by passive seeker and homing geometry. In this paper, a trajectory modulation method called "adaptive Intermittent maneuvers" is added to the modern guidance law, so the observability is enhanced and, consequently, improved the intercept performance. The estimation algorithm called "modified gain pseudo-measurement filter" is used for tracking filter. It is assumed that the passive seeker measure the angles between line of sight and Inertial frame. The Monte-Carlo simulation for realistic air-to-air Intercept scenario are conducted to demonstrate the effectiveness of intermittent maneuvers.ermittent maneuvers.

  • PDF

A Novel Range Estimator for Surface to Air Missile with Closing Velocity Measurements

  • Ra, W.S.;Whang, I.H.;Lee, J.I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1822-1825
    • /
    • 2003
  • A practical range estimator based on the robust Kalman filter is proposed to solve the range estimation problem for surface to air missile(SAM) homing guidance. Apart from the previous works based on the extended Kalman filter(EKF) with bearing only measurement, the proposed scheme makes use of line-of-sight(LOS) rate to ensure the fast convergency at long-range. In this reason, the robust Kalman filter is considered to deal with LOS rate measurement error. The recursive linear structure of proposed filter is easy to implement and make it possible to reduce computational burdens. Moreover, it shows good estimation performance without specific guidance law such as oscillation proportional navigation guidance(OPNG).

  • PDF