• Title/Summary/Keyword: line segment detection

Search Result 52, Processing Time 0.028 seconds

3D Building Reconstruction Using a New Perceptual Grouping Technique

  • Woo, Dong-Min;Nguyen, Quoc-Dat
    • Journal of IKEEE
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • This paper presents a new method for building detection and reconstruction from aerial images. In our approach, we extract the useful building location information from the generated disparity map to obtain the segmentation of interested objects and thus reduce significantly unnecessary line segment extracted in low level feature extraction step. Hypothesis selection is carried out by using undirected graph in which close cycles represent complete rooftops hypotheses, and hypothesis are finally tested to contruct building model. We test the proposed method with synthetic images generated from Avenches dataset of Ascona aerial images. The experiment result shows that the extracted 3D line segments of the buildings can be efficiently used for the task of building detection and reconstruction from aerial images.

  • PDF

A building roof detection method using snake model in high resolution satellite imagery

  • Ye Chul-Soo;Lee Sun-Gu;Kim Yongseung;Paik Hongyul
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.241-244
    • /
    • 2005
  • Many building detection methods mainly rely on line segments extracted from aerial or satellite imagery. Building detection methods based on line segments, however, are difficult to succeed in high resolution satellite imagery such as IKONOS imagery, for most buildings in IKONOS imagery have small size of roofs with low contrast between roof and background. In this paper, we propose an efficient method to extract line segments and group them at the same time. First, edge preserving filtering is applied to the imagery to remove the noise. Second, we segment the imagery by watershed method, which collects the pixels with similar intensities to obtain homogeneous region. The boundaries of homogeneous region are not completely coincident with roof boundaries due to low contrast in the vicinity of the roof boundaries. Finally, to resolve this problem, we set up snake model with segmented region boundaries as initial snake's positions. We used a greedy algorithm to fit a snake to roof boundary. Experimental results show our method can obtain more .correct roof boundary with small size and low contrast from IKONOS imagery. Snake algorithm, building roof detection, watershed segmentation, edge-preserving filtering

  • PDF

Image-Based Maritime Obstacle Detection Using Global Sparsity Potentials

  • Mou, Xiaozheng;Wang, Han
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.129-135
    • /
    • 2016
  • In this paper, we present a novel algorithm for image-based maritime obstacle detection using global sparsity potentials (GSPs), in which "global" refers to the entire sea area. The horizon line is detected first to segment the sea area as the region of interest (ROI). Considering the geometric relationship between the camera and the sea surface, variable-size image windows are adopted to sample patches in the ROI. Then, each patch is represented by its texture feature, and its average distance to all the other patches is taken as the value of its GSP. Thereafter, patches with a smaller GSP are clustered as the sea surface, and patches with a higher GSP are taken as the obstacle candidates. Finally, the candidates far from the mean feature of the sea surface are selected and aggregated as the obstacles. Experimental results verify that the proposed approach is highly accurate as compared to other methods, such as the traditional feature space reclustering method and a state-of-the-art saliency detection method.

An Anomaly Detection Algorithm for Cathode Voltage of Aluminum Electrolytic Cell

  • Cao, Danyang;Ma, Yanhong;Duan, Lina
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1392-1405
    • /
    • 2019
  • The cathode voltage of aluminum electrolytic cell is relatively stable under normal conditions and fluctuates greatly when it has an anomaly. In order to detect the abnormal range of cathode voltage, an anomaly detection algorithm based on sliding window was proposed. The algorithm combines the time series segmentation linear representation method and the k-nearest neighbor local anomaly detection algorithm, which is more efficient than the direct detection of the original sequence. The algorithm first segments the cathode voltage time series, then calculates the length, the slope, and the mean of each line segment pattern, and maps them into a set of spatial objects. And then the local anomaly detection algorithm is used to detect abnormal patterns according to the local anomaly factor and the pattern length. The experimental results showed that the algorithm can effectively detect the abnormal range of cathode voltage.

Rail Surface Defect Detection System of Next-Generation High Speed Train (차세대 고속열차의 레일표면 결함 검출 시스템)

  • Choi, Woo-Yong;Kim, Jeong-Yeon;Yang, Il-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.870-876
    • /
    • 2017
  • In this paper, we proposed the automatic vision inspection system using multi-layer perceptron to detect the defects occurred on rail surface. The proposed system consists of image acquisition part and analysis part. Rail surface image is acquired as equal interval using line scan camera and lighting. Mean filter and dynamic threshold is used to reduce noise and segment defect area. Various features to characterize the defects are extracted. And they are used to train and distinguish defects by MLP-classifier. The system is installed on HEMU-430X and applied to analyze the rail surface images acquired from Honam-line at high speed up to 300 km/h. Recognition rate is calculated through comparison with manual inspection results.

Lane Detection Based on Inverse Perspective Transformation and Kalman Filter

  • Huang, Yingping;Li, Yangwei;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.643-661
    • /
    • 2018
  • This paper proposes a novel algorithm for lane detection based on inverse perspective transformation and Kalman filter. A simple inverse perspective transformation method is presented to remove perspective effects and generate a top-view image. This method does not need to obtain the internal and external parameters of the camera. The Gaussian kernel function is used to convolute the image to highlight the lane lines, and then an iterative threshold method is used to segment the image. A searching method is applied in the top-view image obtained from the inverse perspective transformation to determine the lane points and their positions. Combining with feature voting mechanism, the detected lane points are fitted as a straight line. Kalman filter is then applied to optimize and track the lane lines and improve the detection robustness. The experimental results show that the proposed method works well in various road conditions and meet the real-time requirements.

Single-View Reconstruction of a Manhattan World from Line Segments

  • Lee, Suwon;Seo, Yong-Ho
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Single-view reconstruction (SVR) is a fundamental method in computer vision. Often used for reconstructing human-made environments, the Manhattan world assumption presumes that planes in the real world exist in mutually orthogonal directions. Accordingly, this paper addresses an automatic SVR algorithm for Manhattan worlds. A method for estimating the directions of planes using graph-cut optimization is proposed. After segmenting an image from extracted line segments, the data cost function and smoothness cost function for graph-cut optimization are defined by considering the directions of the line segments and neighborhood segments. Furthermore, segments with the same depths are grouped during a depth-estimation step using a minimum spanning tree algorithm with the proposed weights. Experimental results demonstrate that, unlike previous methods, the proposed method can identify complex Manhattan structures of indoor and outdoor scenes and provide the exact boundaries and intersections of planes.

Development of Gate Operation System Based on Image Processing (영상처리에 기반한 게이트 운영시스템 개발)

  • 강대성;유영달
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.303-312
    • /
    • 1999
  • The automated gate operating system is developed in this paper that controls the information of container at gate in the ACT. This system can be divided into three parts and consists of container identifier recognition car plate recognition container deformation perception. We linked each system and organized efficient gate operating system. To recognize container identifier the preprocess using LSPRD(Line Scan Proper Region Detection)is performed and the identifier is recognized by using neural network MBP When car plate is recognized only car image is extracted by using color information of car and hough transform. In the port of container deformation perception firstly background is removed by using moving window. Secondly edge is detected from the image removed characters on the surface of container deformation perception firstly background is removed by using moving window. Secondly edge is detected from the image removed characters on the surface of container. Thirdly edge is fitted into line segment so that container deformation is perceived. As a results of the experiment with this algorithm superior rate of identifier recognition is shown and the car plate recognition system and container deformation perception that are applied in real-time are developed.

  • PDF

Edge Pattern Classification Method for Efficient Line Detection (효율적인 직선 검출을 위한 에지 패턴 분류 방법)

  • Park, Sang-Hyun;Kim, Jong-Ho;Kang, Eui-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.918-920
    • /
    • 2011
  • In this paper, a simple edge pattern classification method is proposed for detecting straight line segments in an image corrupted by impulse noise. Corrupted images have complicated edge patterns. To detect straight line from an complicated edge pattern, it is needed to simplify the entire edge. The proposed algorithm separates the entire edge into 4 directional partial edge patterns. Each line segment is separated from the partial edge image where several line segments are overlapped, and then the straight line is detected. The results of the experiments emphasize that the proposed algorithm is simple but accurate.

  • PDF

3D Line Segment Detection using a New Hybrid Stereo Matching Technique (새로운 하이브리드 스테레오 정합기법에 의한 3차원 선소추출)

  • 이동훈;우동민;정영기
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.277-285
    • /
    • 2004
  • We present a new hybrid stereo matching technique in terms of the co-operation of area-based stereo and feature-based stereo. The core of our technique is that feature matching is carried out by the reference of the disparity evaluated by area-based stereo. Since the reference of the disparity can significantly reduce the number of feature matching combinations, feature matching error can be drastically minimized. One requirement of the disparity to be referenced is that it should be reliable to be used in feature matching. To measure the reliability of the disparity, in this paper, we employ the self-consistency of the disunity Our suggested technique is applied to the detection of 3D line segments by 2D line matching using our hybrid stereo matching, which can be efficiently utilized in the generation of the rooftop model from urban imagery. We carry out the experiments on our hybrid stereo matching scheme. We generate synthetic images by photo-realistic simulation on Avenches data set of Ascona aerial images. Experimental results indicate that the extracted 3D line segments have an average error of 0.5m and verify our proposed scheme. In order to apply our method to the generation of 3D model in urban imagery, we carry out Preliminary experiments for rooftop generation. Since occlusions are occurred around the outlines of buildings, we experimentally suggested multi-image hybrid stereo system, based on the fusion of 3D line segments. In terms of the simple domain-specific 3D grouping scheme, we notice that an accurate 3D rooftop model can be generated. In this context, we expect that an extended 3D grouping scheme using our hybrid technique can be efficiently applied to the construction of 3D models with more general types of building rooftops.