• Title/Summary/Keyword: line laser

Search Result 908, Processing Time 0.022 seconds

Depth Measurement Method Robust against Scattering of Line Lasers (라인 레이저의 산란에 강인한 심도 측정 방법)

  • Ko, Kwangjin;Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.181-187
    • /
    • 2018
  • Line-laser beams are used for depth measurement of welding beads along the circumference of a pipe. For this, first we project a line-laser beam on an rotating pipe and take a sequence of images of the beam projected on the pipe using a CCD camera. Second, the projected line laser beam in each image is detected, converted into a thin curve. Finally measure the distance between the thinned curve and an imaginary line. When a line-laser beam is projected to a rough metal surface such as arc welding beads, the beam is severely scattered. This severe scattering makes the thinned curve perturbed. In this paper, we propose a thinning method robust against scattering of line lasers. First, we extract a projected line laser beam region using an adaptive threshold. Second, we model a thinned curve with a spline curve with control points. Next, we adjust the control points to fit the curve to the projected line-laser beam. Finally, we take a weighted mean of thin curves on a sequence of image frames. Experiments shows that the proposed thinning method results in a thinning curve, which is smooth and fit to the projected line-laser beam with small error.

A Study on the Performance Improvement of a 3-D Shape Measuring System Using Adaptive Pattern Clustering of Line-Shaped Laser Light (선형레이저빔의 적응적 패턴 분할을 이용한 3차원 표면형상 측정 장치의 성능 향상에 관한 연구)

  • Park, Seung-Gyu;Baek, Seong-Hun;Kim, Dae-Gyu;Jang, Won-Seok;Lee, Il-Geun;Kim, Cheol-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.119-124
    • /
    • 2000
  • One of the main problems in 3D shape measuring systems that use the triangulation of line-shaped laser light is precise center line detection of line-shaped laser stripe. The intensity of a line-shaped laser light stripe on the CCD image varies following to the reflection angles, colors and shapes of objects. In this paper, a new center line detection algorithm to compensate the local intensity variation on a line-shaped laser light stripe is proposed. The 3-D surface shape measuring system using the proposed center line detection algorithm can measure 3-D surface shape with enhanced measurement resolution by using the dynamic shape reconstruction with adaptive pattern clustering of the line-shaped laser light. This proposed 3-D shape measuring system can be easily applied to practical situations of measuring 3-D surface by virtue of high speed measurement and compact hardware compositions.

  • PDF

Laser Welding Application in Car Body Manufacturing

  • Shin, H.O.;Chang, I.S.;Jung, C.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.2-7
    • /
    • 2003
  • Laser welding application for car body manufacturing has many advantages in the stiffness and the lightness of vehicle, the productivity of assembly line, and the degree of freedom in design. This presentation will express the innovation of car body manufacturing including parameter optimization, process modeling, and system integration. In this application the investment for systems was cut down dramatically by real time switching over the laser path between two welding stations. Points of technical discussion are as follows; optimization of parameters such as laser power, robot speed and trajectory, compact and useful design of jig & fixture to assure welding quality for 3 sheet-layer zinc-coated steel, system integration between 4㎾ Nd:YAG laser device and the other systems, on-line real time welding quality monitoring system, perfect safety standards for high power laser, minimization of consumption costs such as arc lamp, protective glass for optic, etc. This application was successfully launched mass production line in 2001. The laser-welded line of side panel consists of 122 stitches totally. And the length is about 2.4m.

  • PDF

A Study on Fabrication of Conductor Patterns on AlN Ceramic Surface by Laser Direct Writing (레이저 직접묘화법에 의한 AlN 기판상의 전도성 패턴 제작에 관한 연구)

  • Lee, Je-Hoon;Seo, Jung;Han, Yu-Hee
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 2000
  • One of perspective direction of microfabrication is direct laser writing technology that allows to create metal, semiconductive and dielectric micropatterns on substrate surface. In this work, a two step method, the combination of seed forming process, in which metallic Al seed was selectively generated on AlN ceramic substrate by direct writing technique using a pulsed Nd : YAG laser and subsequent electroless Ni plating on the activated Al seed, was presented. The effects of laser parameters such as pulse energy, scanning speed and pulse frequency on shape of Alseed and conductor line after electroless Ni plating were investigated. The nature of the laser activated surface is analyzed from XPS data. The line width of this metallic Al and Ni is analyzed using SEM. As a results, Al seed line with 24㎛ width and 100㎛ isolated line space is obtained. Finally, laser direct writing can be applied in the field between thin and thick film technique in electronic industry.

  • PDF

Micro patterning of conductor line by laser induced forward transfer(LIFT) (LIFT 방법에 의한 전도성 미세 패터닝 공정 연구)

  • 이제훈;한유희
    • Laser Solutions
    • /
    • v.2 no.3
    • /
    • pp.52-61
    • /
    • 1999
  • The laser induced forward transfer(LIFT) technique employs a pulsed laser to transfer parts of a thin metal film from an optically transparent target onto an arbitrary substrate in close proximity to the metal film on the target. In this work, a two-step method, the combination of LIFT process, in which a Au film deposited on the $Al_2$O$_3$ substrate by Nd:YAG laser and subsequent Au electroless metal plating on the by LIFT process generated Au seed, was presented. The influence of laser parameters, wavelength, laser power, film thickness and overlap ratio of pulse tracks, on the shapes of deposit and conductor line after electroless plating is experimentally studied. As a results, the threshold power densities for ablation, deposition and metallization were determined and comparison of threshold value between the wave length 1064nm and the second harmonic generated 532nm. In odor to determine a possible application in the electronic industry, a smallest conduct spot size, line width and isolated line space were generated.

  • PDF

Development of Statistical Model for Line Width Estimation in Laser Micro Material Processing Using Optical Sensor (레이저 미세 가공 공정에서 광센서를 이용한 선폭 예측을 위한 통계적 모델의 개발)

  • Park Young Whan;Rhee Sehun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.27-37
    • /
    • 2005
  • Direct writing technology on the silicon wafer surface is used to reduce the size of the chip as the miniature trend in electronic circuit. In order to improve the productivity and efficiency, the real time quality estimation is very important in each semiconductor process. In laser marking, marking quality is determined by readability which is dependant on the contrast of surface, the line width, and the melting depth. Many researchers have tried to find theoretical and numerical estimation models fur groove geometry. However, these models are limited to be applied to the real system. In this study, the estimation system for the line width during the laser marking was proposed by process monitoring method. The light intensity emitted by plasma which is produced when irradiating the laser to the silicon wafer was measured using the optical sensor. Because the laser marking is too fast to measure with external sensor, we build up the coaxial monitoring system. Analysis for the correlation between the acquired signals and the line width according to the change of laser power was carried out. Also, we developed the models enabling the estimation of line width of the laser marking through the statistical regression models and may see that their estimating performances were excellent.

Control of Laser Parameter for Precision Line Processing (미세 선가공을 위한 레이저 변수 제어)

  • Kim, Y.S.;Choi, E.S.;Shin, Y.J.
    • Laser Solutions
    • /
    • v.10 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • We presented the proper laser processing conditions for the capillary line marking, which could be applied for the fabrication of injection needles. With changing the parameters such as lamp current, duty cycle and beam amplification factor of beam expander, we evaluated the processing performance considering amount of dross, processing efficiency and processed linewidth in the sample. We could carry out the proper line marking at the condition of 70% lamp current, duty cycle of 7-10% and 6-times amplification of beam diameter. To perform efficient line processing, the utilization of duty cycle of 12% at 80% lamp current was also preferred.

  • PDF

Adaptable Center Detection of a Laser Line with a Normalization Approach using Hessian-matrix Eigenvalues

  • Xu, Guan;Sun, Lina;Li, Xiaotao;Su, Jian;Hao, Zhaobing;Lu, Xue
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.317-329
    • /
    • 2014
  • In vision measurement systems based on structured light, the key point of detection precision is to determine accurately the central position of the projected laser line in the image. The purpose of this research is to extract laser line centers based on a decision function generated to distinguish the real centers from candidate points with a high recognition rate. First, preprocessing of an image adopting a difference image method is conducted to realize image segmentation of the laser line. Second, the feature points in an integral pixel level are selected as the initiating light line centers by the eigenvalues of the Hessian matrix. Third, according to the light intensity distribution of a laser line obeying a Gaussian distribution in transverse section and a constant distribution in longitudinal section, a normalized model of Hessian matrix eigenvalues for the candidate centers of the laser line is presented to balance reasonably the two eigenvalues that indicate the variation tendencies of the second-order partial derivatives of the Gaussian function and constant function, respectively. The proposed model integrates a Gaussian recognition function and a sinusoidal recognition function. The Gaussian recognition function estimates the characteristic that one eigenvalue approaches zero, and enhances the sensitivity of the decision function to that characteristic, which corresponds to the longitudinal direction of the laser line. The sinusoidal recognition function evaluates the feature that the other eigenvalue is negative with a large absolute value, making the decision function more sensitive to that feature, which is related to the transverse direction of the laser line. In the proposed model the decision function is weighted for higher values to the real centers synthetically, considering the properties in the longitudinal and transverse directions of the laser line. Moreover, this method provides a decision value from 0 to 1 for arbitrary candidate centers, which yields a normalized measure for different laser lines in different images. The normalized results of pixels close to 1 are determined to be the real centers by progressive scanning of the image columns. Finally, the zero point of a second-order Taylor expansion in the eigenvector's direction is employed to refine further the extraction results of the central points at the subpixel level. The experimental results show that the method based on this normalization model accurately extracts the coordinates of laser line centers and obtains a higher recognition rate in two group experiments.

Autonomous Robot Kinematic Calibration using a Laser-Vision Sensor (레이저-비전 센서를 이용한 Autonomous Robot Kinematic Calibration)

  • Jeong, Jeong-Woo;Kang, Hee-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.176-182
    • /
    • 1999
  • This paper presents a new autonomous kinematic calibration technique by using a laser-vision sensor called "Perceptron TriCam Contour". Because the sensor measures by capturing the image of a projected laser line on the surface of the object, we set up a long, straight line of a very fine string inside the robot workspace, and then allow the sensor mounted on a robot to measure the point intersection of the line of string and the projected laser line. The point data collected by changing robot configuration and sensor measuring are constrained to on a single straght line such that the closed-loop calibration method can be applied. The obtained calibration method is simple and accurate and also suitable for on-site calibration in an industrial environment. The method is implemented using Hyundai VORG-35 for its effectiveness.

  • PDF

Depth Measurement of Materials Attached to Cylinder Using Line Laser (라인 레이저를 이용한 원통 부착물의 심도 측정)

  • Kim, Yongha;Ko, Kwangjin;Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.225-233
    • /
    • 2017
  • Line-laser beams are used for accurate measurement of 3D shape, which is robust to external illumination. For depth measurement, we project a line-laser beam across an object from the face and take an image of the beam on the object surface using a CCD camera at some angle with respect to the face. For shape measurement, we project parallel line-laser beams with narrow line to line distance. When a layer of thin materials attached to a cylinder is long narrow along its circumference, we can measure the shape of the layer with a small number of parallel line beams if we project line beams along the circumference of the cylinder. Measurement of the depth of the attached materials on a line-laser beam is based on the number of pixels between an imaginary line along the imaginary cylinder without the attached materials and the beam line along the materials attached to the cylinder. For this we need to localize the imaginary line in the captured image. In this paper, we model the shape of the line as an ellipse and localize the line with least square estimate. The proposed method results in smaller error (maximum 0.24mm) than a popular 3D depth camera (maximum 1mm).