• Title/Summary/Keyword: line impedance measurement

Search Result 137, Processing Time 0.024 seconds

Modified Transmission Line Protection Scheme in the Presence of SCC

  • Naeini, Ehsan Mostaghimi;Vaseghi, Behrouz;Mahdavian, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.533-540
    • /
    • 2017
  • Distance relay identifies the type and location of fault by measuring the transmission line impedance. However any other factors that cause miss calculating the measured impedance, makes the relay detect the fault in incorrect location or do not detect the fault at all. One of the important factors which directly changes the measured impedance by the relay is series capacitive compensation (SCC). Another factor that changes the calculated impedance by distance relay is fault resistance. This paper provides a method based on the combination of distance and differential protection. At first, faulty transmission line is detected according to the current data of buses. After that the fault location is calculated using the proposed algorithm on the transmission line. This algorithm is based on active power calculation of the buses. Fault resistance is calculated from the active powers and its effect will be deducted from calculated impedance by the algorithm. This method measures the voltage across SCC by phasor measurement units (PMUs) and transmits them to the relay location via communication channels. The transmitted signals are utilized to modify the voltage signal which is measured by the relay. Different operating modes of SCC and as well as different faults such as phase-to-phase and phase-to-ground faults are examined by simulations.

Relative Measurement of Differential Electrode Impedance for Contact Monitoring in a Biopotential Amplifier

  • Yoo, Sun-K.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.601-605
    • /
    • 2007
  • In this paper, we propose a simple and relative electrode contact monitoring method. By exploiting the power line interference, which is regarded as one of the worst noise sources for bio-potential measurement, the relative difference in electrode impedance can be measured without a current or voltage source. Substantial benefits, including no extra circuit components, no degradation of the body potential driving circuit, and no electrical safety problem, can be achieved using this method. Furthermore, this method can be applied to multi-channel isolated bio-potential measurement systems and home health care devices under a steady measuring environment.

Measurement and Analysis of Ground Impedance according to Arrangement of Auxiliary Probe around Ground Grid (접지 그리드에서의 보조전극 배치에 따른 접지임피던스 측정 및 분석)

  • Gil, Hyoung-Jun;Shong, Kil-Mok;Kim, Young-Seok;Kim, Chong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.46-50
    • /
    • 2015
  • This paper describes the measurement and analysis of ground impedance according to arrangement of auxiliary probe around ground grid using the fall-of-potential method and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method involves passing a current between a ground electrode and a current probe, and then measuring the voltage between a ground electrode and a potential probe. To minimize interelectrode influences due to mutual resistances, the current probe is a generally placed at a substantial distance from the ground electrode under test. In order to analyze the effects of ground impedance due to the arrangement of auxiliary probe and frequency, ground impedances were measured in case that the arrangements of auxiliary probe were straight line, perpendicular line, and horizontal line. The distance of current probe was located from 10[m] to 200[m] and the measuring frequency was ranged from 55[Hz] to 513[Hz]. As a consequence, the ground impedance increases with increasing the distance from the ground electrode to the point to be tested, but the ground impedance decreases with increasing the frequency.

Simulation for characterization of high speed probe for measurement of single flux quantum circuits (단자속양자 회로 측정프로브의 특성 분석을 위한 시뮬레이션)

  • 김상문;김영환;최종현;조운조;윤기현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.11-15
    • /
    • 2002
  • High speed probe for measurement of sin91e flux quantum circuits is comprised of coaxial cables and microstrip lines in order to carry high speed signals without loss. For the impedance matching between coaxial cable and microstrip line, we have determined the dimension of the microstrip line with 50${\Omega}$ impedance by simulation and then have investigated the effect of line width and cross-sectional shape of signal line, dielectric material, thickness of soldering lead at the coaxial-to-microstrip transition Point, and the an91c between dielectric material and end part of the signal line on the characteristics of signal transmission of the microstrip line. From the simulation, we have found that these all parameter's had influenced on the characteristic of signal transmission on the microstrip line and should be reflected in fabricating high speed probe, We have also determined the dimension of coplanar waveguide to fabricate testing sample for performance test of high speed probe.

Measurement of Transfer Impedance on Shielded Multiconductor Telecommunication Cables using IEC 96-1 Line Injection Method (IEC 96-1 Line Injection Method를 이용한 다 도체 통신케이블 차폐층의 전달임피던스 측정)

  • 이현영;오호석;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.377-383
    • /
    • 2003
  • As the high-speed data communications such as xDSL using the existing copper cable come into wide use, the electromagnetic coupling characteristics of telecommunication cables become more significant. In order to describe the screening performance of telecommunication cable, the transfer impedance of cable shield is required. This paper describes the transfer impedance for two types of telecommunication cables using the line injection method of IEC 96-1. Results are analyzed to show how the materials of cable shields, the positioning of the injection line and of the inner conductor of the CUT(Cable Under Test) affect the value of transfer impedance. We then propose the transfer impedance model of telecommunication cable based on the measurements.

Measurement method of the signal transfer characteristic(S21) of the impedance transformer (임피던스 변환회로의 신호 전달특성(S21) 측정 방법)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1282-1289
    • /
    • 2019
  • In order to measure the transfer characteristic(S21) of the impedance transformer, two impedance transformers must be symmetrically connected. However, the transfer characteristic of two symmetrically connected impedance transformers is influenced by the length of the intermediate connection line. This paper theoretically examines closely the length of the intermediate connection line to obtain the accurate transfer characteristic of the impedance transformer. The electrical length of the intermediate connection line for obtaining the accurate transfer characteristic of the 4:1(50-Ω:12.5-Ω) impedance transformer is calculated about 45°. Using the calculated length of the connection line, The λ/4-microstrip impedance transformer is fabricated at 1 GHz to measure the transfer characteristic. The symmetrically connected impedance transformer is measured the reflection characteristic(S11) of -40.64dB and the transfer characteristic(S21) of -0.154dB at 0.980GHz. This value is approximately equal to the theoretical calculated 987MHz center frequency and -0.15dB transfer loss value of the λ/4-microstrip impedance transformer.

A Study on the Degree of Line Balance to Noise and its Measurement Circuits (잡음평형도와 측정회로에 관한 연구)

  • Yeo, Sang-Kun;Kim, Chong-Tae
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.2
    • /
    • pp.35-41
    • /
    • 2010
  • The balance coefficients between telecommunication lines are specified in the technical standard and the power induction computation method varies in the order of 100 times in magnitude according to the amount of impedance. The results of actual balance measurements, differing from time to time with the measurement circuit or increasing proportionally as the induction voltage increases, appeared as a measurement error because of not using the standard measurement circuit. This article investigates such errors and proposes the use of a standard balance measurement circuit and a measurement device impedance under the domestic notification standard and the ITU-T international standard.

  • PDF

RF Channel Characteristics of the Medium-voltage Power Line for PLC (전력선통신을 위한 중 전압용 전력선의 RF채널 특성)

  • Kim, Seon-Hyo;Kim, Gwan-Ho;Lee, Hyeong-Cheol;Sin, Cheol-Jae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.7
    • /
    • pp.316-321
    • /
    • 2002
  • In this Paper, the channel characteristics of the medium voltage(22.9kV) power line to analysis the broadband power line communication in the frequency range up to 30MHz was measured. With the sideband electrical coupler in the operating frequency range from DC to 30MHz, we measured characteristic impedance, noise and attenuation of the medium voltage power line, and then characteristic impedance was measured at the state of unloaded medium voltage power line by Scattering parameter method of Vector Network Analyzer. As a measurement result, Channel impedance shows 100~380$\Omega$ at the less than 15MHz and 70~230$\Omega$ at the more than 15 MHz. Noise characteristics of power line shows -75dBm at 20MHz and Narrowband interference noise was from 3 MHz to 7MHz.

Placement Standard Research of Auxiliary Probes when Measuring Ground Impedance (접지임피던스 측정시 보조전극의 배치 기준 연구)

  • Kim, Dong-Woo;Gil, Hyoung-Jun;Kim, Dong-Ook;Lee, Ki-Yeon;Moon, Hyun-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1984-1991
    • /
    • 2011
  • Among ground impedance measurement methods, the fall-of-potential method is the most thorough and reliable method. In the fall-of-potential method, ground electrode and auxiliary probes are placed in a straight line, and then, auxiliary potential probe is moved away from the ground electrode. The point at which plotted resistance curve flattens out is taken as right position of auxiliary potential probe. However, in some cases, it is hard to place ground electrode and auxiliary probes in a straight line. Therefore, we provided alternative placement method in this research. The method can be easily applicable to placing auxiliary probes. Also, this paper analyzed and compared ground impedance measurement standards of large grounding systems. Based on the analysis, practical measurement method using an earth tester was proposed. The proposed methods presented in this paper will be useful when determining locations of auxiliary probes in alternative positions, and the methods can be applied practically and easily.

Analysis on the Effects of the Induced Noise with Change of the Separation Distance between Grounding Equipment at End of Telecommunication Line and the Inducting Facilities in Power Inducting Situation (전력 유도 장애 시 통신 선로 케이블의 접지체와 유도원간의 이격거리에 의한 유도 잡음 영향 분석)

  • Choi, Mun-Hwan;Lee, Sang-Mu;Cho, Pyoung-Dong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.215-218
    • /
    • 2007
  • In this paper, we have analyzed the effects from the change of separation distance between grounding equipment at end of telecommunication line and the inducting facilities in power inducting situation. In the result of measurement, we can see that as the separation distance between grounding equipment ant end of telecommunication line and the inducting facility become longer, the induced noise level and PIF level is decreased. From the another experiment results about the effect of changing the impedance size in both ends of telecommunication line, however, we already knew that as the ground impedance at either end of the telecommunication line become grower, the noise level is increased, and as the ground impedance at either end of the telecommunication line become smaller, the noise level is decreased. Hence we can not define the relationship exactly between separation distance from inducting facility to inducted facility and the induced noise level because when the grounding equipment is moved, its impedance size is changed too. In conclusion, changing the separation distance between grounding equipment at end of telecommunication line and the inducting facilities have not influence on the induced noise level.

  • PDF