• Title/Summary/Keyword: line contact

Search Result 842, Processing Time 0.022 seconds

Finite Element Analysis on the Stress Distributions in Rail-Wheel Contacts of High Speed Trains (고속전철용 레일-휠 접촉에서 응력분포에 관한 유한요소해석)

  • 김청균;김기환
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.93-101
    • /
    • 1997
  • The numerical results on the stress distributions of rail-wheel contact problems are presented for three models in a high-speed rail system. These models which have straight and tapered (1:40 and 1:20) contact geometries between the wheelset and rail are analyzed using the finite element approach. From the simulation results we found that the tapered geometry (1:20) of railwheel contact base line showed very stable contact stress distributions for a whole contact position between the wheel and rail in a curved rail section. The FEM computed results may present an optimized slope geometry of rail-wheel contact in a high-speed railway system.

Determination of stress state in formation zone by central slip-line field chip

  • Toropov Andrey;Ko Sung Lim
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.24-28
    • /
    • 2005
  • Stress state of chip formation zone is one of the main problems in metal cutting mechanics. In two-dimensional case this process is usually considered as consistent shears of work material along one of several shear surfaces, separating chip from workpiece. These shear planes are assumed to be trajectories of maximum shear stress forming corresponding slip-line field. This paper suggests a new approach to the constriction of slip-line field, which implies uniform compression in chip formation zone. Based on the given model it has been found that imaginary shear line in orthogonal cutting is close to the trajectory of maximum normal stress and the problem about its determination has been considered as well. It has been shown that there is a second central slip-line field inside chip, which corresponds well to experimental data about stress distribution on tool rake face and tool-chip contact length. The suggested model would be useful in understanding mechanistic problems in machining.

A Study on comnon-mode-driven shield for capacitive coupling active electrode (용량성 결합 능동 전극의 공통 모드 구동 차폐)

  • Lim, Yong-Gyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.201-206
    • /
    • 2012
  • The indirect-contact ECG measurement is a newly developed method for unconstrained and nonconscious measurement in daily life. This study introduced a new method of electrode circuit design developed for reducing the 60Hz power line noise observed at the indirect-contact ECG measurement. By the introduced common-mode-driven shielding, the voltage of the electrical shield surrounding the capacitive coupling electrode is maintained at the same as the common mode voltage. Though the method cannot reduce the level of common mode voltage itself, that reduces effectively the differential mode noise converted from the common mode voltage by the difference of cloth impedance between the two capacitive coupling electrode. The experiment results using the actual indirect-contact ECG showed that the 60Hz power line noise was reduced remarkably though the reduction ratio was smaller than the expected by the theory. Especially, the reduction ratio became large for the large difference of cloth. It is expected that the introduced method is useful for reducing the power line noise under condition of poor electrical grounding.

Development of Catenary Stagger and Height Measurement System using Laser (레이저를 이용한 전차선 편위 및 높이 측정 시스템 개발)

  • Song, Sung-Gun;Lee, Teak-Hee;Song, Jae-Yeol;Park, Seong-Mo
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.569-574
    • /
    • 2008
  • Catenary and Pantograph are used to transmit electrical energy to electric railways. Catenary (Overhead Contact Lines) should be installed precisely and managed for stable train operations. But external factors such as weather, temperature, etc., or aging affect catenary geometry. Changed catenary stagger and height cause high voltage spark or instant electric contact loss. Big spark derived from contact loss can damage the pantograph carbon strip and overhead contact lines that might interrupt the train operations. Therefore, to prevent a big scale spark or electric contact loss, catenary maintenance are required catenary geometry measurement systems with catenary maintenance capability. In this paper, we describe the development of catenary height and stagger measurement system. The catenary height and stagger measurement system uses Acuity company's AR4000 Laser Range Finder for distance measurement and AccuRange Line Scanner for degree measurement. This system detects suspicious overhead line sections with excessive stagger and height stagger variance.

Relative Measurement of Differential Electrode Impedance for Contact Monitoring in a Biopotential Amplifier

  • Yoo, Sun-K.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.601-605
    • /
    • 2007
  • In this paper, we propose a simple and relative electrode contact monitoring method. By exploiting the power line interference, which is regarded as one of the worst noise sources for bio-potential measurement, the relative difference in electrode impedance can be measured without a current or voltage source. Substantial benefits, including no extra circuit components, no degradation of the body potential driving circuit, and no electrical safety problem, can be achieved using this method. Furthermore, this method can be applied to multi-channel isolated bio-potential measurement systems and home health care devices under a steady measuring environment.

NUMERICAL STUDY ON THE MICRO-LINE PATTERNING PROCESS USING AN INKJET PRINGTING METHOD (잉크젯 방법을 통한 마이크로 라인 형성에 관한 수치적 연구)

  • Lee, W.R.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.548-550
    • /
    • 2010
  • The droplet motion on a flat substrate with contact angle hysteresis is studied by solving the equations governing the conservation of mass and momentum. The liquid- gas interface is determined by an level-set method which is based on a sharp-interface representation for accurately imposing the matching or coupling conditions at the interface. The method is modified to treat the dynamic contact angle at the liquid-gas-solid interface. The computations are performed to investigate a droplet impact and merging pattern on a flat substrate to find a optimal condition in a micro-line patterning process. The effects of dynamic contact angles on droplet motion are quantified.

  • PDF

A Method of Wood Section Measuring and the Image Calibration Using Line Laser (Line Laser 를 이용한 목재단면 측정 및 영상보정 방법)

  • Kim, Gi Hwan;Park, Min Su;Kim, Do Yeop;Lee, Suk Yong;Lee, Eung Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.641-646
    • /
    • 2016
  • The best method of measuring wood diameter is a contact-type device: however, obtaining an accurate result can be problematic under certain circumstances. In this study, we used a laser beam and a CCD camera that did not require contact with wood. The wood is illuminated by the laser beam, and the CCD camera captures this illumination. The measurement results were determined by processing of the captured image sequences. This paper explains the use of image processing and laser systems for measurement of wood under circumstances in which physical contact is impossible.

Analysis of Elasto-Plastic Dynamic Behaviour of Plate Subjected to Load by Low Velocity Impact (저속충격 하중을 받는 판의 탄소성 동적거동 해석)

  • Huh, Gyoung-Jae;Dokko, Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.158-164
    • /
    • 2000
  • In this study a computer program is developed for analyzing the elasto-plastic dynamic behaviors of the plate subjected to line-loading by a low-velocity impactor. The equilibrium equation associated with the Hertzian contact law is formulated to evaluate the transient dynamic behaviour of the impacted plate. Compared with an elastic analysis, the effects of material plasticity are presented. Consequently, in the case of elasto-plastic analysys, impulse decreases, displacements increase and contact time duration is longer than the elastic case for same finite element model. And the time variation of the impacting load is not significant due to the plasticity except at the beginning of impact duration, and the induced stresses of the plate are more realistic.

  • PDF

Effects of Varying Contact back-up Roll on the strip flatness (VCR 롤이 판평판도에 미치는 영향)

  • Chen, Xianlin;Zhang, Jie;Yang, Quan;Zhang, Quingdong
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.144-147
    • /
    • 1998
  • VCR is a back-up roll with a special contour which leads to the length of the contact line between back-up roll and work becones self adjustable in accordance with the width of the strip. The simulation of a finite element model and the on-line test at production mill demonstrate that the VCR roll may keep the crown of the roll gap relatively stable, and at same time, permit the rolling pressure to be adjusted over a wider range, and increase the effect of work roll bending on the roll gap. The VCR rolls have been successfully used at the first stands of two largest cold rolling mills in China, and on-line test has been done at a wide hot strip finishing train. The use of VCR roll has created favorable conditions for subsequent rolling passes and the achievement of better flatness quality.

  • PDF

A completely non-contact recognition system for bridge unit influence line using portable cameras and computer vision

  • Dong, Chuan-Zhi;Bas, Selcuk;Catbas, F. Necati
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.617-630
    • /
    • 2019
  • Currently most of the vision-based structural identification research focus either on structural input (vehicle location) estimation or on structural output (structural displacement and strain responses) estimation. The structural condition assessment at global level just with the vision-based structural output cannot give a normalized response irrespective of the type and/or load configurations of the vehicles. Combining the vision-based structural input and the structural output from non-contact sensors overcomes the disadvantage given above, while reducing cost, time, labor force including cable wiring work. In conventional traffic monitoring, sometimes traffic closure is essential for bridge structures, which may cause other severe problems such as traffic jams and accidents. In this study, a completely non-contact structural identification system is proposed, and the system mainly targets the identification of bridge unit influence line (UIL) under operational traffic. Both the structural input (vehicle location information) and output (displacement responses) are obtained by only using cameras and computer vision techniques. Multiple cameras are synchronized by audio signal pattern recognition. The proposed system is verified with a laboratory experiment on a scaled bridge model under a small moving truck load and a field application on a footbridge on campus under a moving golf cart load. The UILs are successfully identified in both bridge cases. The pedestrian loads are also estimated with the extracted UIL and the predicted weights of pedestrians are observed to be in acceptable ranges.