• Title/Summary/Keyword: limiting temperature

Search Result 411, Processing Time 0.029 seconds

Increased impedance by quench at a shield layer of HTS power cable for fault current limiting function

  • Choi, Youngjun;Kim, Dongmin;Cho, Jeonwook;Sim, Kideok;Kim, Sungkyu;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.59-63
    • /
    • 2019
  • To reduce the fault current below the current capacity of a circuit breaker, researches on HTS (High Temperature Superconductor) power cables with fault current limiting (FCL) function are increasing. An FCL HTS power cable transports current with low a impedance during normal operation. Yet, it limits the fault current by an increased inductive or resistive impedance of conducting layer when quench occurs at the FCL HTS power cable by the large fault current. An inductive type FCL HTS power cable uses increased inductive impendence caused by leakage magnetic flux outside the cable core when the quench occurs at a shield layer losing the magnetic shielding effect. Therefore, it has an advantage of less resistive heating than resistive type FCL HTS power cable and temperature increase is suppressed. This paper describes an ideal circuit model for the FCL HTS power cable to investigate the effectiveness of increased inductive impedance when quench occurs at the shield layer. Then, FEM analysis is presented with a simplified model cable composed of various iron yokes to investigate the effect of the shape of yoke on the generation of the inductive impedance.

Analysis of Performance Characteristics of Gas Turbine-Pressurized SOFC Hybrid Systems Considering Limiting Design Factors (제한요소를 고려한 가스터빈-가압형 SOFC 하이브리드 시스템의 성능특성 해석)

  • Yang Won Jun;Kim Tong Seop;Kim Jae Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1013-1020
    • /
    • 2004
  • The hybrid system of gas turbine and fuel cell is expected to produce electricity more efficiently than conventional methods, especially in small power applications such as distributed generation. The solid oxide fuel cell (SOFC) is currently the most promising fuel cell for the hybrid system. To realize the conceptual advantages resulting from the hybridization of gas turbine and fuel cell, optimized construction of the whole system must be the most important. In this study, parametric design analyses for pressurized GT/SOFC systems have been peformed considering probable practical limiting design factors such as turbine inlet temperature, fuel cell operating temperature, temperature rise in the fuel cell and soon. Analyzed systems include various configurations depending on fuel reforming type and fuel supply method.

Application of LATE-PCR to Detect Candida and Aspergillus Fungal Pathogens by a DNA Hybridization Assay

  • Gopal, Dhayaalini Bala;Lim, Chua Ang;Khaithir, Tzar Mohd Nizam;Santhanam, Jacinta
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.4
    • /
    • pp.358-364
    • /
    • 2017
  • Asymmetric PCR preferentially amplifies one DNA strand for use in DNA hybridization studies. Linear-After-The-Exponential-PCR (LATE-PCR) is an advanced asymmetric PCR method which uses innovatively designed primers at different concentrations. This study aimed to optimise LATE-PCR parameters to produce single-stranded DNA of Candida spp. and Aspergillus spp. for detection via probe hybridisation. The internal transcribed spacer (ITS) region was used to design limiting primer and excess primer for LATE-PCR. Primer annealing and melting temperature, difference of melting temperature between limiting and excess primer and concentration of primers were optimized. In order to confirm the presence of single-stranded DNA, the LATE-PCR product was hybridised with digoxigenin labeled complementary oligonucleotide probe specific for each fungal genus and detected using anti-digoxigenin antibody by dot blotting. Important parameters that determine the production of single-stranded DNA in a LATE-PCR reaction are difference of melting temperature between the limiting and excess primer of at least $5^{\circ}C$ and primer concentration ratio of excess primer to limiting primer at 20:1. LATE-PCR products of Candida albicans, Candida parapsilosis, Candida tropicalis and Aspergillus terreus at up to 1:100 dilution and after 1 h hybridization time, successfully hybridised to respective oligonucleotide probes with no cross reactivity observed between each fungal genus probe and non-target products. For Aspergillus fumigatus, LATE-PCR products were detected at 1:10 dilution and after overnight hybridisation. These results indicate high detection sensitivity for single-stranded DNA produced by LATE-PCR. In conclusion, this advancement of PCR may be utilised to detect fungal pathogens which can aid the diagnosis of invasive fungal disease.

Feasibility study on the inductive fault current limiting cable

  • Lee, Sang Yoon;Choi, Jongho;Kim, Dong Min;Sim, Kideok;Cho, Jeonwook;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.24-28
    • /
    • 2013
  • Fault current limiting (FCL) cable is a kind of superconducting cable which has a function of limiting the fault current at the fault of power grid. The superconducting cable detours the fault current through its stabilizer to keep the temperature as low as possible. On the other hands, the FCL cable permits the temperature rise within some acceptable limit and the fault current is limited by the consequent increase of the resistance of superconducting cable. This kind of FCL cable is called 'resistive FCL cable' because it uses resistive impedance to limit the fault current. In this paper, we suggest a novel concept of FCL cable, which is named as 'inductive FCL cable'. The inductive FCL cable is similar as the magnetic shielding fault current limiter in its operating mechanism. The magnetic field of superconducting cable is almost perfectly shielded by the induced current at the shielding layer during its normal operation. However, at the fault condition, quench occurs at the shielding layer by the induced current higher than its critical current and the magnetic field is spread out of the shielding layer. It will induce additional inductive impedance to the superconducting cable and the inductive impedance can be increased more by installing some material with high magnetic susceptibility around the superconducting cable. We examined the feasibility of inductive FCL cable with simple elemental experiments. The current limiting performance of inductive FCL cable was estimated considering an arbitrary power grid and its fault condition.

Analysis on Current Limiting Characteristics of the SFCL with Magnetically Coupled Two Coils and YBCO Coated Conductor Due to the Winding Direction and the Turn Number' Ratio Between Two Coils (직렬 연결된 두 코일과 YBCO Coated Conductor로 구성된 초전도 전류제한기의 권선방향과 권선 비에 따른 전류제한 특성 분석)

  • Lee, Dong-Hyeok;Du, Ho-Ik;Kim, Yong-Jin;Han, Byoung-Sung;Han, Sang-Chul;Lee, Jeong-Phil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.52-56
    • /
    • 2011
  • The ongoing Superconducting Fault Current Limiter(SFCL) development mainly has focused on the application of commercializaton and power system through combining with normal-conducting device, moving away from current-limiting method, which is solely dependant on the existing superconductor. Compared to the structural development above, on the other hand, the research on applying superconducting current-limiting element to SFCL, the heart of SFCL, still has a lot left to do, apart form traditional resistive type SFCL. In this study, we looked into the current limiting characteristic of SFCL using core and coil. YBCO coated conductor with stainless steel stabilizer layer was verified by the excellent of current-limiting element of the resistive type SFCL that has a high Jc and index as well as being superior in mechanical property. Also, we study temperature characteristics and resistance characteristics, max voltage, response time and current-limiting ability that can be an indicator as current-limiting element while applying to superconducting current-limiting element caused by variation of winding direction, winding ratio of SFCL using core and coil.

A Study on the Warm Beep Drawabilities of Galvannealed Steel Sheet (합금화 용융 아연 도금강판의 온간 디프드로잉 성형성에 관한 연구)

  • Chang S. H.;Choi C. S.;Choi Y. C.;Seo D. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.168-173
    • /
    • 2000
  • The limiting drawing ratio (LDR) under uniform heating of blanks was measured at the various temperature ranges between 25 and $250^{\circ}C$ by using two different blank shapes, square and circular blanks, and six different blank sizes with the drawing ratios(DR) of 2.4 to 2.9. The galvannealed steel sheet (SCP3CM 60/60) of 0.7mm thickness was used. The LDR at warm forming condition reached 1.2 times of that at room temperature, and the maximum drawing depth reached 1.9 times. The higher temperature was adopted, the more stable and uniform thickness strain distribution was observed.

  • PDF

A Study on the Warm Deep Drawabilities of Galvannealed Steel Sheet (합금화 용융 아연 도금강판의 온간 딥드로잉 성형성에 관한 연구)

  • 장성호;서대교
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.423-429
    • /
    • 2002
  • The limiting drawing ratio (LDR) under uniform heating of blanks was measured at the various temperature ranges between 25 and 25$0^{\circ}C$ by using two different blank shapes, square and circular blanks, and six different blank sizes with the drawing ratios(DR) of 2.4 to 2.9. The galvannealed steel sheet (SCP3CM 60/60) of 0.7mm thickness were used. The LDR at warm forming condition reached 1.2 times of that at room temperature, and the maximum drawing depth reached 1.9 times. The higher temperature was adopted, the more stable and uniform thickness strain distribution was observed. Some cases of the experimental results were compared with the analitical results using the commercial finite element method (FEM) code.

Evaluation of Bioremediation Effectiveness by Resolving Rate-Limiting Parameters in Diesel-Contaminated Soil

  • Joo, Choon-Sung;Oh, Young-Sook;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.607-613
    • /
    • 2001
  • The biodegradation rates of diesel oil by a selected diesel-degrading bacterium, Pseudomonas stutzeri strain Y2G1, and microbial consortia composed of combinations of 5 selected diesel-degrading bacterial were determined in liquid and soil systems. The diesel degradation rate by strain Y2G1 linearly increased $(R^2=0.98)$ as the diesel concentration increased up to 12%, and a degradation rate as high as 5.64 g/l/day was obtained. The diesel degradation by strain Y2G1 was significantly affected by several environmental factors, and the optimal conditions for pH, temperature, and moisture content were at pH8, $25^{\circ}C$, and 10%, respectively. In the batch soil microcosm tests, inoculation, especially in the form of a consortium, and the addition of nutrients both significantly enhanced the diesel degradation by a factor of 1.5 and 4, respectively. Aeration of the soil columns effectively accelerated the diesel degradation, and the initial degradation rate was obviously stimulated with the addition of inorganic nutrients. Based on these results, it was concluded that the major rate-limiting factors in the tested diesel-contaminated soil were the presence of inorganic nutrients, oxygen, and diesel-degrading microorganisms. To resolve these limiting parameters, bioremediation strategies were specifically designed for the tested soil, and the successful mitigation of the limiting parameters resulted in an enhancement of the bioremediation efficiency by a factor of 11.

  • PDF

Study on the forming Limit Diagram of Steel Sheets for the Oil Pan of Automobile at the Warm Forming Condition (오일팬용 재료의 온간 성형한계도에 관한 연구)

  • 이항수;오영근;최치수
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.670-680
    • /
    • 2000
  • The purpose of this study is to provide the database of forming limit diagram applicable to the warm forming of oil pan. The test materials are SCP1 and SCP3C with the thickness of 1.4mm which is used for the oil pan of automobile. The testing temperature is 5$^{\circ}C$~15$0^{\circ}C$ which is In the range of practical usage. The results are the forming limit diagram limiting dome height and the maximum punch load at each temperature such as 5$^{\circ}C$, $25^{\circ}C$, 6$0^{\circ}C$, 9$0^{\circ}C$, 12$0^{\circ}C$ and 15$0^{\circ}C$. From these results, we can see that the forming limit curves are translated depending upon the temperature and that FLC at low temperature is higher than at high temperature. Both of limiting dome height and maximum punch load also decrease as the temperature increases. Present results can be useful for die trial and forming analysis as a tool of evaluating the forming severity for the sheet metal forming processes at the warm working condition by comparing the practical strains with FLC.

  • PDF

A Model for Litter Decomposition of the Forest Ecosystem in South Korea (남한의 산림생태계에 있어서의 낙엽의 분해모델)

  • Park, Bong Kyu;In Sook Lee
    • The Korean Journal of Ecology
    • /
    • v.4 no.1_2
    • /
    • pp.38-51
    • /
    • 1981
  • The present investigation was estimated the effect of temperature, precipitatiion, and time on the decomposition of litters with litter bags of Pinus densiffora and Quercus mongolica at Gure where elevation in 50m, and at Nogodan where elevation in 1300m on Mt. Jiri. As the above results, decomposition model was proposed to relation of the environmental conditions. And was investigated the production and decomposition of litters from the stands of various forest communities in Kwangneung, Mt. Jiri and Mt. Halla. The results are as follows; The models for the decay of organic carbon (C) was as follows: $C=Coe^{-Kt}$ (limiting factor;time) $C=Coe^{-K'te}$ (limiting factor;tempedrature) $C=Coe^{-KnP}$ (limiting factor:precipitation) As observed in litter bag method, the decomposition rate of litter in Pinus densiflora was slower than that of Quercus mongolica. The higher elevation, the slower decomposition rate. The decomposition of litters at Gure where elevation in 50m was equally influenced by temperature and precipitation. But at Nogodan where elevation in 1300m was much inflenced by precipitation. The decay constant of litters was larger in hardwood forest than in coniferous forest. In the same species, the more elevatiion, the less decomposition constant. The time required for the decay of 50%, 95^, 99% of the accumulated litters in the forest floor were faster in hardwood forest than in coniferous forest. In the same species, the higher elevatiion, the longer time required.

  • PDF