• 제목/요약/키워드: limit state analysis

검색결과 651건 처리시간 0.033초

Serviceability reliability analysis of cable-stayed bridges

  • Cheng, Jin;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제20권6호
    • /
    • pp.609-630
    • /
    • 2005
  • A reliability analysis method is proposed in this paper through a combination of the advantages of the response surface method (RSM), finite element method (FEM), first order reliability method (FORM) and the importance sampling updating method. The accuracy and efficiency of the method is demonstrated through several numerical examples. Then the method is used to estimate the serviceability reliability of cable-stayed bridges. Effects of geometric nonlinearity, randomness in loading, material, and geometry are considered. The example cable-stayed bridge is the Second Nanjing Bridge with a main span length of 628 m built in China. The results show that the cable sag that is part of the geometric nonlinearities of cable-stayed bridges has a major effect on the reliability of cable-stayed bridge. Finally, the most influential random variables on the reliability of cable-stayed bridges are identified by using a sensitivity analysis.

Dynamic reliability analysis of offshore wind turbine support structure under earthquake

  • Kim, Dong-Hyawn;Lee, Gee-Nam;Lee, Yongjei;Lee, Il-Keun
    • Wind and Structures
    • /
    • 제21권6호
    • /
    • pp.609-623
    • /
    • 2015
  • Seismic reliability analysis of a jacket-type support structure for an offshore wind turbine was performed. When defining the limit state function by using the dynamic response of the support structure, a number of dynamic calculations must be performed in a First-Order Reliability Method (FORM). That means analysis costs become too high. In this paper, a new reliability analysis approach using a static response is used. The dynamic effect of the response is considered by introducing a new parameter called the Peak Response Factor (PRF). The probability distribution of PRF can be estimated by using the peak value in the dynamic response. The probability distribution of the PRF was obtained by analyzing dynamic responses during a set of ground motions. A numerical example is presented to compare the proposed approach with the conventional static response-based approach.

콘크리트 충전 각형강관 기둥재의 최대내력 (The Beam-Column Strength of Concrete Filled Tubes)

  • 이명재
    • 한국강구조학회 논문집
    • /
    • 제9권3호통권32호
    • /
    • pp.391-400
    • /
    • 1997
  • 본 연구의 목적은 콘크리트충전 각형강관 기둥의 최대내력을 산정할 수 있는 내력식을 제안하는데 있다. 내력식을 제안하기 위해서 수치해석과 실험을 통해 최대내력를 정량적으로 평가하고 기존의 한계상태설계법의 규준식에 근거하여 적절한 보정방안을 제안하여 콘크리트 충전 각형강관 기둥의 최대내력을 산정할 수 있는 내력식을 제안하고자 한다.

  • PDF

Optimal design using genetic algorithm with nonlinear inelastic analysis

  • Kim, Seung-Eock;Ma, Sang-Soo
    • Steel and Composite Structures
    • /
    • 제7권6호
    • /
    • pp.421-440
    • /
    • 2007
  • An optimal design method in cooperated with nonlinear inelastic analysis is presented. The proposed nonlinear inelastic method overcomes the difficulties due to incompatibility between the elastic global analysis and the limit state member design in the conventional LRFD method. The genetic algorithm used is a procedure based on Darwinian notions of survival of the fittest, where selection, crossover, and mutation operators are used to look for high performance ones among sections in the database. They are satisfied with the constraint functions and give the lightest weight to the structure. The objective function taken is the total weight of the steel structure and the constraint functions are load-carrying capacity, serviceability, and ductility requirement. Case studies of a planar portal frame, a space two-story frame, and a three-dimensional steel arch bridge are presented.

차량 토션빔의 동적 특성을 고려한 신뢰성 분석 및 최적설계 (Reliability Analysis and Optimization Considering Dynamic Characteristics of Vehicle Torsion Beam)

  • 이춘승;임홍재;이상범
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.813-817
    • /
    • 2002
  • This paper presents the reliability analysis technique on the dynamic characteristics of the torsion beam consisting the suspension system of passenger car. We utilize response surface method (RSM) and Monte Carlo simulation to obtain the response surface model that describes the limit state function for the natural frequencies of the torsion beam. Using the response surface model and the design optimization technique, we have obtained the optimized section considering the reliability of the torsion beam structure.

  • PDF

A Study on a Repair Technique for a Reinforced Concrete Frame Subjected to Seismic Damage Using Prestressing Cable Bracing

  • Lee, Jin Ho;EI-Ganzory, Hisham
    • Architectural research
    • /
    • 제3권1호
    • /
    • pp.53-60
    • /
    • 2001
  • The proposed building upgrading technique employs prestressing cables to function as bracing to improve the seismic performance during future events. A four-story reinforced concrete moment resisting frame damaged from an ultimate limit state earthquake is assessed and upgraded using the proposed technique. Both existing and upgraded buildings are evaluated in regard of seismic performance parameters performing static lateral load to collapse analysis and dynamic nonlinear time history analysis as well. To obtain realistic comparison of seismic performance between existing and upgraded frames, each frame is subjected to its critical ground motion that has strength demand exceeding the building strength supply. Furthermore, reliability of static lateral load to collapse analysis as a substitute to time history analysis is evaluated. The results reveal that the proposed upgrading technique improves the stiffness distribution compared to the ideal distribution that gives equal inter-story drift. As a result, the upgraded building retains more stories that contribute to energy dissipation. The overall behavior of upgraded building beyond yield is also enhanced due to the gradual change of building stiffness as the lateral load increases.

  • PDF

Lifting lug의 설계 절차 및 강도해석 방법에 대한 고찰 (Design and strength analysis of lifting lugs)

  • 서순기;김경래;엄성섭;서용석
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2011년도 특별논문집
    • /
    • pp.51-54
    • /
    • 2011
  • This paper presents methods for design and strength analysis of lifting lugs utilized in assembling, erection, and turning over of ship structures. Lifting lugs are designed in accordance with ASME BTH-1-2008; Design of Below-the-Hook Lifting Devices. Experimental tests for fillet welded joints were conducted to design weld size of lifting lugs and under-structures. The nonlinear finite element method, using MSC.Marc software, is employed for limit state assessment of lifting lugs in static loading conditions. The analysis considers nonlinearities in material properties and contact between lifting lug and pin.

  • PDF

지반앵커에 대한 인장시험 성능평가 기준선의 적용성 고찰 (Applicability of the Tensile Test Performance Evaluation Baseline for Ground Anchors)

  • 김대근;박태광;박이근;김태형
    • 한국지반공학회논문집
    • /
    • 제38권8호
    • /
    • pp.75-84
    • /
    • 2022
  • 현재 인장형 지반앵커는 그 사용목적, 사용기간에 따라 가설과 영구로 구분하여 성능평가를 별도로 제시하고 있다. 현재의 성능평가 상한선과 하한선 기준을 실무에 적용하는 데 있어 타당한 것으로 보인다. 하지만, 압축형 지반앵커는 주로 영구로 사용되어 온 점으로 인해 가설과 영구의 구분 없이 영구에 해당하는 기준이 제시되어 있어 제거형과 같이 가설로 사용하는 지반앵커에 있어서는 엄격한 기준이 되고 있다. 기존 성능평가 기준선을 고찰해 본 결과, 하한 기준선은 가설과 영구 구분 없이 적용할 수 있는 것으로 판단되나 상한 기준선은 가설과 영구를 구분하여 제시하는 것이 바람직한 것으로 판단된다. 압축형 지반앵커에서 상한선 기준의 적용에 있어서 앵커의 정착지반상태(암반 또는 토사), 사용기간, 특히 하중-변위 곡선의 탄성상태 유지 여부 등을 고려하여 상한선을 조정할 필요성이 있다.

Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Dongping
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.355-366
    • /
    • 2019
  • Self-centering wall (SCW) is a resilient and sustainable structural system which incorporates unbonded posttensioning (PT) tendons to provide self-centering (SC) capacity along with supplementary dissipators to dissipate seismic energy. Hysteretic energy dissipators are usually placed at two sides of SCWs to facilitate ease of postearthquake examination and convenient replacement. To achieve a good prediction for the skeleton curve of the wall, this paper firstly developed an analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers (VD-SCWs) using the concept of elastic theory. A simplified method for the calculation of limit state points is developed and validated by experimental results and can be used in the design of the system. Based on the analytical results, parametric analysis is conducted to investigate the influence of damper and tendon parameters on the performance of VD-SCWs. The results show that the proposed approach has a better prediction accuracy with less computational effects than the Perez method. As compared with previous experimental results, the proposed method achieves up to 60.1% additional accuracy at the effective linear limit (DLL) of SCWs. The base shear at point DLL is increased by 62.5% when the damper force is increased from 0kN to 80kN. The wall stiffness after point ELL is reduced by 69.5% when the tendon stiffness is reduced by 75.0%. The roof deformation at point LLP is reduced by 74.1% when the initial tendon stress is increased from $0.45f_{pu}$ to $0.65f_{pu}$.

Dominant failure modes identification and structural system reliability analysis for a long-span arch bridge

  • Gao, Xin;Li, Shunlong
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.799-808
    • /
    • 2017
  • Failure of a redundant long-span bridge is often described by innumerable failure modes, which make the structural system reliability analysis become a computationally intractable work. In this paper, an innovative procedure is proposed to efficiently identify the dominant failure modes and quantify the structural reliability for a long-span bridge system. The procedure is programmed by ANSYS and MATLAB. Considering the correlation between failure paths, a new branch and bound operation criteria is applied to the traditional stage critical strength branch and bound algorithm. Computational effort can be saved by ignoring the redundant failure paths as early as possible. The reliability of dominant failure mode is computed by FORM, since the limit state function of failure mode can be expressed by the final stage critical strength. PNET method and FORM for system are suggested to be the suitable calculation method for the bridge system reliability. By applying the procedure to a CFST arch bridge, the proposed method is demonstrated suitable to the system reliability analysis for long-span bridge structure.