• Title/Summary/Keyword: limit index

Search Result 595, Processing Time 0.025 seconds

A Proposal of Flow Limit for Soils at Zero Undrained Shear Strength (흙의 비배수전단강도가 0이 되는 함수비인 흐름한계의 제안)

  • Park, Sung-Sik;Nong, Zhenzhen
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.73-84
    • /
    • 2013
  • When a slope failure or a debris flow occurs, a shear strength on failure plane becomes nearly zero and soil begins to flow like a non-cohesive liquid. A consistency of cohesive soils changes as a water content increases. Even a cohesive soil existing at liquid limit state has a small amount of shear strength. In this study, a water content, at which a shear strength of cohesive soils is zero and then cohesive soils will start to flow, was proposed. Three types of clays (kaolinite, bentonite and kaolinite (50%)+bentonite (50%)) were mixed with three different solutions (distilled water, sea water and microbial solution) at liquid limit state and then their water contents were increased step by step. Then, their undrained shear strength was measured using a portable vane shear device called Torvane. The ranges of undrained shear strength at liquid and plastic limits are 3.6-9.2 kPa and 24-45 kPa, respectively. On the other hand, the water content that corresponds to the value of the undrained shear strength changing most rapidly is called flow water content. The flow limit refers to the water content when undrained shear strength of cohesive soils is zero. In order to investigate the relationship between liquid limit and flow limit, the cohesive index was defined as a value of the difference between flow limit and liquid limit. The new plasticity index was defined as the value of difference between flow limit and plastic limit. The new liquidity index was also defined using flow limit. The values of flow limit are 1.5-2 times higher than those of liquid limit. At the same time, the values of new plasticity index are 2-5.5 times higher than those of original plasticity index.

Reliability index for non-normal distributions of limit state functions

  • Ghasemi, Seyed Hooman;Nowak, Andrzej S.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.365-372
    • /
    • 2017
  • Reliability analysis is a probabilistic approach to determine a safety level of a system. Reliability is defined as a probability of a system (or a structure, in structural engineering) to functionally perform under given conditions. In the 1960s, Basler defined the reliability index as a measure to elucidate the safety level of the system, which until today is a commonly used parameter. However, the reliability index has been formulated based on the pivotal assumption which assumed that the considered limit state function is normally distributed. Nevertheless, it is not guaranteed that the limit state function of systems follow as normal distributions; therefore, there is a need to define a new reliability index for no-normal distributions. The main contribution of this paper is to define a sophisticated reliability index for limit state functions which their distributions are non-normal. To do so, the new definition of reliability index is introduced for non-normal limit state functions according to the probability functions which are calculated based on the convolution theory. Eventually, as the state of the art, this paper introduces a simplified method to calculate the reliability index for non-normal distributions. The simplified method is developed to generate non-normal limit state in terms of normal distributions using series of Gaussian functions.

A Method of Determining the Maximum Interface Flow Limit Using Continuation Algorithm (연속알고리듬을 이용한 연계선로의 송전운용한계 결정)

  • Kim, Seul-Gi;Song, Hwa-Chang;Lee, Byeong-Jun;Gwon, Se-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.2
    • /
    • pp.78-84
    • /
    • 2000
  • This paper introduces a method of determining the maximum real power transfer limit of interface lines, which connect two areas of a power system, using locally parameterized continuation algorithm. This method traces the path of power flow solutions as interface flow is gradually increased under a certain load demand condition and finds the steady state voltage stability limit, the interface flow limit. Voltage stability index is used to indicate how close the maximum limit is reached. Also, this study presents a procedure to determine the security-constrained interface flow limit using the above method. Contingency ranking index is proposed to identify the severity of contingencies. The case study is performed according to the suggested procedure.

  • PDF

An Efficient Blast Design using Reliability Index (신뢰성지수를 이용한 효율적인 발파설계)

  • 박연수;박선준;강성후
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.821-831
    • /
    • 1998
  • The actual ground vibrations due to NATM and foundation blasting at Seoul(weathered rock), Pusan(weathered rock) and Youngkwang(quartz andesite) have been measured, and the data were analyzed using reliability index($\beta$) to determinate the vibration equations and the maximum charge weight for efficient blast. These were suggested with the division of ultimate limit state($\beta$=0), serviceability limit state($\beta$=1.28) and safety state($\beta$=3), respectively. The reliability index 0 mean 50% data line obtained by the least squares best-fit line. The reliability index 1.28 and 3 represent bounds below 90% and 99.9% of the data, respectively. In this study, reliability index $\beta$=1.28 with security and economy was suggested. The maximum charge weight equations for efficient blast were obtained in W=(Vc/384.90)1.5151.D3(Seoul), W=(Vc/579.82)1.4706.D3(Pusan). W=(Vc/1654.01)1.3456.D3(Youngkwang), and the blast vibration equatiions in V=385(SD)-1.98(Seoul), V=580(SD)-2.04(Pusan), V=1654(SD)-2.23(Youngkwang), respectively. From this study, inference and analysis methods of vibration equations using reliability theory were established.

  • PDF

An improved response surface method for reliability analysis of structures

  • Basaga, Hasan Basri;Bayraktar, Alemdar;Kaymaz, Irfan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.175-189
    • /
    • 2012
  • This paper presents an algorithm for structural reliability with the response surface method. For this aim, an approach with three stages is proposed named as improved response surface method. In the algorithm, firstly, a quadratic approximate function is formed and design point is determined with First Order Reliability Method. Secondly, a point close to the exact limit state function is searched using the design point. Lastly, vector projected method is used to generate the sample points and Second Order Reliability Method is performed to obtain reliability index and probability of failure. Five numerical examples are selected to illustrate the proposed algorithm. The limit state functions of three examples (cantilever beam, highly nonlinear limit state function and dynamic response of an oscillator) are defined explicitly and the others (frame and truss structures) are defined implicitly. ANSYS finite element program is utilized to obtain the response of the structures which are needed in the reliability analysis of implicit limit state functions. The results (reliability index, probability of failure and limit state function evaluations) obtained from the improved response surface are compared with those of Monte Carlo Simulation, First Order Reliability Method, Second Order Reliability Method and Classical Response Surface Method. According to the results, proposed algorithm gives better results for both reliability index and limit state function evaluations.

Nonlinear regression methods and genetic algorithms for estimation of compression index of clays using toughness limit

  • Satoru Shimobe;Eyyub Karakan;Alper Sezer
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.371-382
    • /
    • 2024
  • Measurement or prediction of compression index (Cc) of soils is essential for assessment of total and differential settlement of structures. It is a well-known fact that this parameter is controlled by several index identifiers of soil including initial void ratio, Atterberg limits, overconsolidation ratio, specific gravity, etc. Many studies in the past proposed relationships for prediction of Cc based on different index properties. Therefore, this study aims to present a comparison of previously proposed equations for estimation of Cc. Data from literature was compiled, and a total of 90 and 623 test results on remolded and undisturbed specimens were used to question the validity of previously proposed equations. Nevertheless, the modeling ability of 7 and 12 equations for estimation of Cc of remolded and undisturbed soils were questioned by use of compiled data. Moreover, new empirical relationships based on initial void ratio and toughness limit for prediction of Cc was proposed by use of nonlinear multivariable regression and evolutionary based regression analyses. The results are promising-the performances of models established are quite acceptable, which are verified by statistical analyses.

The Calculation Method with index for the Transfer Power limit to Capital Area (지수를 적용한 수도권 융통전력한계량 계산)

  • Lee, Woon-Hee;Kang, Myung-Jang;Song, Suk-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.50-52
    • /
    • 2008
  • We have limited the transfer power to capital area below a certain level which is called "The Capital Area Transfer Power Limit", and calculated on every Thursday for the application next week. This level is very important in our network operation, because if this level is not set properly, our power network can be fallen under great danger in case of a fault among the transfer power line. But the calculation procedure for the limit level is so complicated and iterative that it mace us spend much time and do much work. So, when a sudden trip of the related facility to the limit level we can't recalculate the limit level fast enough. And this can drop our network reliability below our standards, therefore our network can be dangerous. To avoid this kind of problems, we have figured out a method to calculate simply the limit level. That method uses the index related to the level. We think this method can make short of the calculation procedures for the level. This paper deals with the simplified method for the calculation of the level limit.

  • PDF

Load & Resistance Factors Calibration for Sliding and Overturning Limit State Design of Perforated Caisson Breakwater (유공케이슨 방파제 활동 및 전도 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.458-464
    • /
    • 2020
  • Calibration of load-resistance factors for the limit state design of perforated caisson breakwaters are presented. Reliability analysis of 12 breakwaters in nationwide ports was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, some load-resistance factors were proposed by changing target reliability index.

Target Reliability Index of Single Gravel Compaction Piles for Limit State Design (한계상태설계를 위한 단일 쇄석다짐말뚝의 목표신뢰도지수)

  • You, Youngkwon;Lim, Heuidae;Park, Joonmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.5-15
    • /
    • 2014
  • Target reliability index in the limit state design indicated the safety margin and it is important to determine the partial factor. To determine the target reliability index which is needed in the limit state design, the six design and construction case histories of gravel compaction piles (GCP) were investigated. The limit state functions were defined by bulging failure for the major failure mode of GCP. The reliability analysis were performed using the first order reliability method (FORM) and the reliability index was calculated for each ultimate bearing capacity formulation. The reliability index of GCP tended to be penportional to the safety factor of allowable stress design and average value was ${\beta}$=2.30. Reliability level that was assessed by reliability analysis and target reliability index for existing structure foundations were compared and analyzed. As a result, The GCP was required a relatively low level of safety compared with deep and shallow foundations and the currd t reliability level were similar to the target reliability in the reinforced earth retaining-wall and soil-nailing. Therefore the target reliability index of GCP suggested as ${\beta}_T$=2.33 by various literatures together with the computed reliability level in this study.

Comparison of Muscular Endurance Limit of the Thumb with Repetitive Using Between Adults and Children (성인 및 청소년의 엄지손가락 반복사용에 따른 근 피로한계 비교)

  • Park, J.H.;Kim, G.H.;Son, K.
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • According to the frequent use of mobile devices, risk of repetitive strain injury for the finger joints was increasing recently. The purpose of this study was to investigate the difference of muscular endurance limit of the thumb between adults and children. A total of thirty subjects (15 adults: $41.0{\pm}7.9$ years and 15 children: $9.5{\pm}2.7$ years) was recruited for this experiment. Maximum voluntary contraction (MVC) of the thumb was measured for 100 trials for each subject by using a push-pull gauge. From the maximum peak value obtained, three main factors (MVC, endurance limit, and fatigue index) were defined to quantify fatigue characteristics of the thumb flexor muscle. The experimental results showed that the mean of MVC, endurance limit, and fatigue index of the children were approximately 50% compared to the adults (p < 0.001). From the results of Pearson correlation test, the endurance limit was highly correlated with weight, age, hand length rather than height. Based on this study, children are more vulnerable to repetitive task using the thumb such as text/SNS messaging, gaming, and scrolling.