• Title/Summary/Keyword: limit cycle criterion

Search Result 17, Processing Time 0.028 seconds

State-Space Analysis on The Stability of Limit Cycle Predicted by Harmonic Balance

  • Lee, Byung-Jin;Yun, Suk-Chang;Kim, Chang-Joo;Park, Jung-Keun;Sung, Sang-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.697-705
    • /
    • 2011
  • In this paper, a closed-loop system constructed with a linear plant and nonlinearity in the feedback connection is considered to argue against its planar orbital stability. Through a state space approach, a main result that presents a sufficient stability criterion of the limit cycle predicted by solving the harmonic balance equation is given. Preliminarily, the harmonic balance of the nonlinear feedback loop is assumed to have a solution that determines the characteristics of the limit cycle. Using a state-space approach, the nonlinear loop equation is reformulated into a linear perturbed model through the introduction of a residual operator. By considering a series of transformations, such as a modified eigenstructure decomposition, periodic averaging, change of variables, and coordinate transformation, the stability of the limit cycle can be simply tested via a scalar function and matrix. Finally, the stability criterion is addressed by constructing a composite Lyapunov function of the transformed system.

Service Life Analysis of Control Valve for Automatic Turbine Startup of Thermal Power Plant (화력 발전소 증기 터빈의 자동기동을 위한 주증기 제어 밸브 수명해석)

  • Kim, Hyo-Jin;Kang, Yong-Ho;Shin, Cheul-Gyu;Park, Hee-Sung;Yu, Bong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.7-12
    • /
    • 2000
  • The automatic turbine startup system provides turbine control based on thermal stress. During the startup, control system monitors and evaluates main components of turbine using damage mechanism and life assessment. In case of valve chest, the temperature of inner/outer wall is measured by thermo-couples and the safety of these values are evaluated by using allowable ${\Delta}T$ limit curve during the startup. Because allowable ${\Delta}T$ limit curve includes life assessment, it is possible to apply this curve to turbine control system. In this paper, low cycle fatigue damage and combined rupture and low cycle fatigue damage criterion proposed for yielding the allowable ${\Delta}T$ limit curve of CV(control valve) chest. To calculate low cycle fatigue damage, the stress analysis of valve chest has peformed using FEM. Automatic turbine startup to assure service life of CV was achieved using allowable ${\Delta}T$ limit curve.

  • PDF

Service Life Analysis of Control Valve far Automatic Turbine Startup of Thermal Power Plant (화력 발전소 증기 터빈의 자동기동을 위한 주증기 제어 밸브 수명해석)

  • Kim, Hyo-Jin;Gang, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The automatic turbine startup system provides turbine control based on thermal stress. During the startup, control system monitors and evaluates main components of turbine using damage mechanism and life assessment. In case of valve chest, the temperature of inner/outer wall is measured by thermo-couples and the safety of these values are evaluated by using allowable △T limit currie during the startup. Because allowable ΔT limit curve includes life assessment, it is possible to apply this curve to turbine control system. In this paper, low cycle fatigue damage, combined rupture and low cycle fatigue damage criterion were proposed for yielding the allowable ΔTf limit curve of CV(control valve) chest. To calculate low cycle fatigue damage, the stress analysis of valve chest has been performed using FEM. Automatic turbine startup to assure service life of CV was achieved using allowable ΔT limit curve.

Passive Dynamic Walking : Design of Internal Parameters

  • Sung, Sang-Hak;Youngil Youm;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.446-446
    • /
    • 2000
  • This paper presents the design of a passive biped walking robot based on limit cycle analysis. By using numerical analysis and experiment, we identify better design criterion for biped walking robot. In designing robot parameters we apply global search method to find limit cycles for given robot parameters and ground angle. Internal parameter variation changes limit cycle behavior, total energy, strides, etc and the characteristics of walking is analyzed by simulation and experiments.

  • PDF

Failure Probability Model of Buried Pipeline (매설배관의 파손 확률 모델)

  • Lee, Eok-Seop;Pyeon, Jang-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.116-123
    • /
    • 2001
  • A failure probability model based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as nearby cavity, backfill, load cycle and corrosion on failure probability of the buried pipes are systematically investigated. The location of cavity is found to affect failure probability of buried pipeline within a certain limit. It is noted that the flexibility of backfill plays a great role to change the failure probability of buried pipeline. Furthermore, the corrosion gives less effects than other boundary conditions such as cavity, load as cavity, load cycle, and backfill to the failure probability of buried pipeline.

  • PDF

A Study Stability Analysis of a PWM Controlled Hydraulic Equipment (PWM 제어되는 유압장치의 안정성 해석)

  • ;Wennmacher, G.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1469-1478
    • /
    • 1995
  • PWM control is a kind of nonlinear control. The merits of PWM control of hydraulic equipment are the robustness of the high speed on-off valve and its low price. And it is easily implemented to hydraulic equipments with microcomputer. The high speed on-off valve is directly digitally controlled without any D/A converter. The objectives of this study is to analyze the limit cycle which regularly appear in the position control system using high speed on-off valve, and to give a criterion for the stability of this system. To do this, the nonlinear characteristics of PWM and cylinder friction of this system are described by harmonic linearization and the effects of parameter variations to the system stability are examined theoretically and experimentally. Consequently, the availability of the proposed method is confirmed well.

Effects of External Current Constraint on the Belousov-Zhabotinskii System Measured by a Pt Electrode

  • Wei, Guoying;Jin, Yongdong;Ge, Hongliang;Luo, Jiuli
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.543-547
    • /
    • 2005
  • The Belousov-Zhabotinskii system measured by a Pt electrode is investigated under external electrode current constraint. A dynamical analysis of the electrode reaction phase has been made by means of a linearized stability criterion valid for three-variable system. It turns out that limit cycle oscillatory regime and dynamical behaviors of the electrode reaction phase have been degenerated under periodical electrode current.

Study on Stability Analysis of Rock Slope Under Freezing-Thawing Cycle (동결융해작용을 받는 암반사면의 안정성해석에 관한 연구)

  • Baek, Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.543-550
    • /
    • 2000
  • Rock slopes along the road or railroad are affected by temperature and therefore experienced iterative freezing-thawing process between winter and early spring. The purpose of this study is to analyze the stability of rock slopes which are influenced by the deterioration due to the freezing-thawing. The analysis is the homogenization method which evaluates the strength property of discontinuous rock mass, and as a strength failure criterion, Drucker-Prager failure criterion is used. The deterioration property of real rock is obtained by a freezing-thawing laboratory test of tuff and this property of deterioration is quantitated and used as a basic data of stability analysis for rock mass. To evaluate the deterioration depth due to the freezing-thawing in situ rock slope, one dimensional heat conductivity equation is used and as the result I can find that the depth of which is affected by a temperature. After the freezing-thawing depth of model slope is determined, we analyze the pattern of rock mass stength value of rock slope model which excesses the limit of self-load.

  • PDF

A Study on Stability Analysis of Hydraulic System Using High Speed On-Off Valves (고속전자밸브를 사용한 유압시스템의 안정성 해석에 관한 연구)

  • 유태재
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.412-420
    • /
    • 2003
  • This study describes the merits of PWM control of hydraulic system using high speed on-off valves. Generally, Electro-hydraulic valves can be classified into two classification: valves which are controlled by analog signal and which are controlled by digital. The former includes hydraulic servo valves and proportional valves which require A/D converters as interface to digital computer and too costly and sensitive to oil contamination because of complexity in structures. The latter includes high speed on-off valves which do not require A/D converters because they are normally operated in a pulse width modulation(PWM) method, and are low in price and robust to oil contamination because of their simple structures. The objectives of this study is to analyze the limit cycle which regularly appear in the position control system using 2/2way high speed on-off valves and to give a criterion for the stability of this system. The nonlinear characteristics of PWM and cylinder friction of this system are described by harmonic linearization and the effects of parameter variations to the system stability are simulated.

Experimental Evaluation of Fatigue Threshold for SA-508 Reactor Vessel Steel (SA-508 압력용기용 강에 대한 피로균열성장 하한계 조건의 실험 평가)

  • Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.160-167
    • /
    • 2012
  • This paper is concerned with a particular fracture mechanics parameter ${\Delta}K_{th}$, known as the 'threshold stress intensity range', or 'fatigue threshold'. This threshold ${\Delta}K_{th}$ constitutes, as it were, a hinge between the notion of crack initiation and the notion of crack growth. It has often been thought that, like the endurance limit, it could be an intrinsic criterion of the material. The study was conducted on a SA-508 pressure vessel steel used in the nuclear power industry. This material exhibits a typical threshold effect in the range of the crack growth rates which were determined; that is, below approximately $da/dN=10^{-6}mm/cycle$, the slope of the da./dN versus ${\Delta}K$ curve is almost vertical. The value of ${\Delta}K_{th}$ was determined at a growth rate of $10^{-7}$ mm/cycle according to the ASTM Standard for threshold testing. The fatigue threshold values are in the range 21 $kg/mm^{3/2}$ to 12 $kg/mm^{3/2}$ depending on the stress ratio effect.