• Title/Summary/Keyword: limestone zone

Search Result 101, Processing Time 0.024 seconds

The Characteristic of Strength for a Lime Stone in Donghae Area and Harden Cement Milk of Super Injection Grouting (동해 석회암과 SIG 고결체의 강도특성)

  • Park, Young-Ho;Kim, Nak-Young;Hong, Sa-Myun;Yook, Jeong-Hoon;Kim, Ki-Seog
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.137-145
    • /
    • 2004
  • Limestone zone in korea have been distributed to diagonal line so that it is wide from the Gangwondo to the Jeonlanamdo. The limestone cavity and fractured zone were formed by chemical weathering. Limestone cavity and fractured zone was reinforced with cemented milk(w/c=60%)by high pressure jet grouting by tripple -pipe to establish bridge foundation on the ground condition like limestone cavity. To analyze property of limestone and solid of cement milk(w/c=65%), mixed solid of cement, core NX size in the limestone cavity and fractured zone and compressive strength. Seismic tomograpy exploration was pcrforn1cd to analyze deformation modulus of limestone. The analysis suggests that deformation modulus of limestone has effect on uniaxial compressive strength, seismic velocity, seismic elasticity modulus. Average static elasticity modulus of limestone is $5.08{\times}10^5kgf/cm^2$, cement and coal mixed solid is $0.25{\times}10^5kgf/cm^2$, $0.095{\times}10^5kgf/cm^2$. Average seismic velocity of limestone is 5.240m/sec, cement and coal mixed solid is 2,211.3m/sec, 1,447.5m/sec. Average uniaxial compressive strength of limestone was $1,221.3kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $125.22kgf/cm^2$, $35kgf/cm^2$ each other. Average friction angle of limestone was $49.14^{\circ}$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $38.39^{\circ}, 25.83^{\circ}$ each other. Average cohesion of limestone was $137.7kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $23.5kgf/cm^2$, $15.5kgf/cm^2$ each other. Average deformation modulus of limestone was $2.84{\times}10^5kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $0.4{\times}10^5kgf/cm^2, 0.12{\times}10^5kgf/cm^2$ each other. It was analyzed that the elasticity and uniaxial compressive strength, seismic velocity of solid of cement milk mixed limestone pieces and coal had an highly interrelation regardless of existence of limestones pieces and coal but it had shown that limestones had an lower interrelation. In case of field seismic velocity and deformation of limestone, SIC solid of cement milk mixed with coal and limestone pieces had an highly interrelation.

  • PDF

On the Genesis of Skarn-type Scheelite Deposits at the Dongmyoung mine (동명광산(東明鑛山)의 스카른형(型) 회중석(灰重石) 광상(鑛床)의 성인(成因))

  • Oh, Mihn-Soo;Park, Ki-Hwa
    • Economic and Environmental Geology
    • /
    • v.16 no.1
    • /
    • pp.37-49
    • /
    • 1983
  • The skarn type tungsten deposits are developed in the contact aureole of Jurassic biotite-hornblende granodiorite and limestone beds. The latter can be divided into the Great Limestone Series of Joseon System and Gabsan Formation which is correlative to the Hongjeom Series of Pyeongahn System. The skarns are impregnated in the limestone, sandstone, schist and granodiorite, and showing zonal distribution. The five skarn zones are from fresh limestone inwards to wollastonite-skarn, clinopyroxene-skarn, clinopyroxene-garnet skarn, garnet skarn and vesuvianite skarn zone. The ore mineral, scheelite, disseminates in the clinopyroxene-garnet and vesuvianite skarn zone, and the size of the scheelite crystals in vesuvianite skarn zone is larger than in clinopyroxene- garnet skarn zone. According to the mineral paragenesis and the composition of skarn minerals, oxygen fugacity ($fo_2$) is low. Fluid inclusions in quartz comprise much $LCO_2$ and fluid inclusion studies revealed that the homogenization temperatures range $240-290^{\circ}C$.

  • PDF

Geology and Ore deposits of Songgwang Mine (송광광산(松廣鑛山)의 지질광상(地質鑛床))

  • Hong, Man Seup
    • Economic and Environmental Geology
    • /
    • v.2 no.3
    • /
    • pp.58-67
    • /
    • 1969
  • Songgwang lead zinc mine is located in about 12km to the north-east of Jeonju City. Geology of the mine and its visinity is consisted of Jeonju series belonged to so-called Okcheon system, Seodaesan tuff formation, Silla series, and the quartz porphyry intruded into these formations. Jeonju series comprising 3 formations; that is, of Sadaeri, Sindong, and Girinbong. Jeonju series is generally distributed in southern part of the area, striking NNW, and diping NE $30^{\circ}$, or NW $30^{\circ}$. It is deformed to form synclinorium and anticlinorium plunging to the north with low angle. In the northern part of the area, Jeonju series was cut by Sinpeongri-fault of NEE direction near Sinpeongri. In the north side of the fault, it is overturned and shows NEE or NWW strikes and NW $60^{\circ}$ dips. At the west of Songgwangri, it is cut by 3 thrusts; the two are almost parallel each other, and the third oneis manifested by the fact that the lower black shale zone thrusted over the upper limestone. Songgwangri thrust, so named, is a post-mineral fault and its plane represents a premineral slip plane. Enrichment of are took place along the bedding plane or fissure parallel to it, as seen in adit No. 1 or No. 2 along the floor of the thrust, and along the sheared zone or the brecciated zone oblique to the plane near the thrust in crystalline limestone of Sindong formation as observed in the underground levels of inclined slope. Ore minerals are chiefly zincblende, galena, pyrrhotite, arsenopyrite, acompanied pyrite and chalcopyrite, and contain Au and Ag. In earlier stage of mineralization, the limestone was recrystalized, and sulphide minerals were enriched in the· permiable zone said above by pyrometasomatism, and in later stage the limestone was affected chloritization and sericitization. However hydrothermal replacement was weak, so that enrichment did not took place. It seems that minerallizing materials came up through the premineral slip plane and injected, and replaced the limestone in permiable zone said above with sulphide are minerals. Then Songgwangri thrust took place and, the lower black shale zone thrusted upon crystalline limestone.

  • PDF

Geochemical Exploration Technics in the Pungchon Limestone Area (풍촌 석회암지대 탐사에 적용될 새 지화학탐사법 연구)

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.23 no.4
    • /
    • pp.369-381
    • /
    • 1990
  • Most of significant ore deposits in South Korea such as the Sangdong W - Mo, the Yeonhwa Pb-Zn and the Geodo Cu-Fe skarn ore deposits occur at the southern limb of the Hambaeg syncline in the Taebaeg Basin. The mineralization took place in the interbedded limestone of the Myobong Formation and the Pungchon limestone of the Great Limestone Group of the Cambrian age, generally striking E-W and dipping 25-30 degrees north. There are no outcrops of the skarn-type orebody at the northern limb of the syncline. In order to find a clue of a possible hidden orebody localized at the limestones in the northern limb, a lithogeochemical exploration by using carbon isotope and some elements such as Si, Ca, Fe and Al at the Sangdong Mine area has been attempted as for a modelling study. For this study, 45 samples from the Pungchon limestone which do not show any megascopic indication of mineralization have been taken in both the mineralized zone and the unminerallized zone at the Sangdong Mine area. Analytical data show that there are big differences in the contents of CaO and $Al_2O_3$ between the Pungchon limestone of the mineralized zone and that of the unmineralized zone. Carbon isotope data exhibit that ${\delta}^{13}C$ values of the Pungchon limestone in the mineralized zone are highter than those in the unmineralized zone. The difference in the analytical values of CaO, $Al_2O_3$ and the carbon isotope between the mineralized and the unmineralized zones is as follows ; Unminerallized zone Mineralized zone CaO 51.3% 43.5% $Al_2O_3$ 0.6% 2.4% ${\delta}^{13}C$ -0.39 permil -0.56 permil $Fe_2O_3$ 0.9% 1.4% $SiO_2$ 3.0% 2.4% The decrease in the Si content of the Pungchon limestone in the mineralized zone is contrary to the result of the previous study (Moon, 1987). On the basis of identification of the increase in the Al content of the limestone in the mineralized zone, it could be deduced that the decrease in the Si content of the Pungchon limestone might be due to the result of increase in the alteration products mainly occurred along fracture-system such as joint cracks or minor faults and that the phenomena shown by the Si and Al content in the mineralized zone might be derived from the thermal effect of granite extended mineralizing activity to the overlied limestone on the surface. Higher mean values of Fe and Al as well as lower mean values of carbon content and the ${\delta}^{13}C$ than mean values of those in the Pungchon limestone at the northern limb of the Hambaeg Syncline may be applicable in exploration for blind orebodies.

  • PDF

Physicochemical Study of the Wondong Fe-Pb-Zn Skarn Deposit, Korea (원동(院洞) Fe-Pb-Zn 스카른광상의 물리화학적(物理化學的) 특징(特徵))

  • Chang, Ho Wan;Chang, Byung Uck
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 1992
  • The Wondong Fe-Pb-Zn deposit is located in endo and exoskarns formed along the contact between the Makkol limestone interbedding pelitic limestone of Ordovician age and quartz porphyry of Cretaceous age. At the Wondong mine, the endoskarn shows a discontinuous zonal arrangement from quartz porphyry to pelitic limestone as follows: unaltered quartz porphyry, weakly altered quartz porphyry zone, intensively altered pinkish quartz porphyry zone, garnet zone, and greyish white and fine-grained clinopyroxene zone developed at pelitic limestone side. In terms of chemical mass balance, intensively altered pinkish quartz porphyry relative to unaltered quartz porphyry shows substantial enrichments in $K_2O$, $Na_2O$, and HREE and depletions in MgO, CaO, total $Fe_2O_3$, and LREE. On the other hand, garnet zone of endoskarn is enriched in CaO, MnO, total $Fe_2O_3$, MgO and depleted in $K_2O$, $Na_2O$. $Al_2O_3$ seems to be determining inert component. Thus the behavior of elements indicates that the mobility of elements depends on the equilibration of hydrothermal fluid and minerals and affects on enrichments by fractionation from and depletions by partition to hydrothermal fluid, respectively. Traversing toward pelitic limestone from a central zone of exoskarn, the exoskarn also shows a zonal arrangement as follows: garnet zone, clinopyroxene zone, and decolored pelitic limestone. The arrangement of mineral assemblages in skarns of the Wondong mine is the result of an increase in CaO and $K_2O$ toward the pelitic limestone. Skarn and ore minerals were formed in the following sequence: early skarn, late skarn and magnetite, pyrite, sphalerite, galena, and molybdenite. On the basis of stabilities of mineral assemblages, physicochemical conditions of the late skarn and magnetite mineralization are estimated to be $350^{\circ}C{\leq}T{\leq}400^{\circ}C$ at 1 Kb, $-23{\leq}log\;fO_2{\leq}-18$, and $0.005{\leq}XCO_2{\leq}0.01$, while those of the early skarn to be $420^{\circ}C{\leq}T{\leq}550^{\circ}C$ at 1 Kb.

  • PDF

Report on the Sam Han Chang Gun Manganese Deposits (삼한(三韓) 장군(將軍) 광산(鑛山) 조사(調査) 보문(報文))

  • Hwang, In Chon
    • Economic and Environmental Geology
    • /
    • v.1 no.1
    • /
    • pp.9-34
    • /
    • 1968
  • Manganese ore deposits of the Samhan Changgun Properties are located at the valley of west-lope-side of Changgun-bong (1132m) occupied over the Myon border between Sochon-myon and Jaesan-myon Pongwha-gun, Kyongsang-Pukdo. Geology of the more property and it's vicinity consists of Wonnan formation and Yulri formation of pre-Cambrain and Changgun limestone formation, Mica-schist formation, quartizite formation and Jaesan formation (containing coal bearing zone the unknown age. And granites and dykes were intruded into the above formation later. 1. Management deposits is embedded the formation of Janggun limestone especially Contact zone in the contact zone to of Chunyang Granite limestone enclosed by Granite, and Maginal zone of fault line in the limestone. Therefore, Chunyang Granite is Closely related to ore deposit. Pegmatite which is near by ore deposit was intruded before mineralization and it seems to be a channelway of ore solution. The most important ore deposits of property grouped into south deposit, east deposit, east-Gachon deposit, South-Gachon deposit, Durimgok deposit and West deposit, out-crops at several place. Besides these deposits there also are several prospects on outcrop scathered. Hydrothermal alteration take place strongly in the well rock and it's sequence are Characterized as following; 1) Dolomitization 2) Carbonization 3) Mamgamotozation 4) Pyritization 5) Silicification 6) Oxidation 2. The grade of manganese dioxide is up to Mn 45% in Maximum, but generally, averaging Mn 30~35% of high grade ore and averaging Mn 30~32% of manganese carbonates are mined in his property.

  • PDF

Geology and Mineral Resources of the Okchǒn Zone-The Boundary between the Okchǒn and Chosǒn Systems in the South of Jechǒn, and the Geology in its Vicinity- (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -제천남부(堤川南部)의 옥천계(沃川系)의 조선계(朝鮮系)의 경계(境界) 및 부근(附近)의 지질(地質)-)

  • Kim, Ok Joon;Min, Kyung Duck;Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.3
    • /
    • pp.225-230
    • /
    • 1986
  • Various interpretations on the boundary between the $Okch{\check{o}}n$ system and the Great Limestone series of the $Chos{\check{o}}n$ system, and on the geologic structure and stratigraphy of the $Okch{\check{o}}n$ system have been yielded by the previous studies, and they are still in hot debate. The present work has mainly studied on the boundary between the $Okch{\check{o}}n$ and $Chos{\check{o}}n$ systems in the south of $Jech{\check{o}}n$, and the geology in its vicinity to clarify the previous misinterpretations if any on the geologic structure and in trun stratigraphy of the area concerned. The boundary between the $Okch{\check{o}}n$ system and the Great Limestone series of the $Chos{\check{o}}n$ system has been thought to be (1) gradational relation which means two systems are the same formation, (2) unconformable relation in which the $Okch{\check{o}}n$ system overlies the $Chos{\check{o}}n$ system, (3) unconformable relation in which the $Chos{\check{o}}n$ system overlies the Okchon system indicating that the age of the $Okch{\check{o}}n$ system is Precambrian, and (4) fault contact in which the $Okch{\check{o}}n$ system of Precambrian age comes in contact with the $Chos{\check{o}}n$ system of Cambro-Ordovician age. The present study clearly found that the relationship between the two systems is a fault zone contact. Shear zone of a width of 300 to 400m is developed, and andesitic volcanics and basic dikes are intruded along the fault zone. This fault contact is exactly the north extension of the Bonghwajae fault, which was denominated long time ago by two of the present authors. The eastern side of the fault has been uplifted so that the $S{\check{o}}changri$ formation of the $Okch{\check{o}}n$ system cropped out in the zone of the Great Limestone series. All the previous workers thought that the $S{\check{o}}changri$ formation rests on the Great Limestone series, but the present study found an overthrust having a strike of $N8^{\circ}E$ and dip of $30^{\circ}NW$ between them, and the $S{\check{o}}changri$ formation has thrusted over the Great Limestone series at the central part of the study area. In the southern and northern parts of this uplifted $S{\check{o}}changri$ formation, the Great Limestone series rests unconformably on it. In the eastern part of the study area where the Mt. Dangdu is located and the previous workers thought that the $S{\check{o}}changri$ formation rests on the Great Limestone series, Precambrian basement rock whose age is older than 1720+50 m.y. crops out in the northern part of the east-west trending high angle fault, and the Great Limestone series rests unconformably on the basement.

  • PDF

A Petrological Study on the Southwestern Contact Zone of the Boeun Granodiorite, Ogcheon Zone (보은화강섬록암(報恩花崗閃綠岩) 서남부(西南部) 접촉대(接觸帶)에 관(關)한 암석학적(岩石學的) 연구(硏究))

  • Lee, Dai Sung;Park, Jong Sim
    • Economic and Environmental Geology
    • /
    • v.14 no.2
    • /
    • pp.55-76
    • /
    • 1981
  • Southwestern contact zone of the Boeun granodiorite occurs near the thrust fault between the Ogcheon Group and Majeonri Limestone Formation. Ogcheon Group, metasediments composed of the Munjuri Formation, Changri Formation, and unconformably overlying Hwanggangri Formation, belongs to greenschist facies of regional metamorphism accompanied with deformation of two fold axes, $N10^{\circ}E$ and $N45-65^{\circ}E$ directions. Basic metamorphic rocks occurring in the Changri and Limestone Formations are the meta-basalts and meta-diabases of tholeiitic basalt series. The meta-basalts intruded in the Changri Formation as sills, whereas the meta-diabases in the Changri and Limestone Formations as stocks in appearance. They are considered to have emplaced before the formation of two fold axes and related with the thrust fault, based on the geologic setting of the area. The metamorphic facies are identified to be greenschist facies to epidote-amphibolite facies for the meta-basalt, and epidote-amphibolite facies for the meta-diabases. It is interpreted that such a variety of facies was related from the combination of earlier deuteric alteration and later regional metamorphism. The metasediments in southwestern contact zont of the Boeun granodiorite which is a product of later syntectonic intrusion of middle Jurassic in age, show pyroxene-hornfels facies near the contact and amphibole-horenfels facies away from the contact to the mineral zoning in the contact metamorphic aureole of the Limestone Formation, based on the paragenetic analysis of mineral assemblages. The Limestone in the area appears to be considerably $SiO_2-CaO-MgO-CO_2-H_2O$ can be adopted to evaluate equilibrium conditions of the mineral assemblages in each mineral zone. It is revealed that a temperature gradient was existed accross the contact aureole ranging from the higher igneous side to lower sedimentary side, whereas no clear trend of $XCO_2$ variation appears but high mole fraction. The tremolite diopside-quartz-calcite assemblages occurs in common through the most mineral zones of contact aureole that is in good agreement with the equivalent reaction curve which extends over a wide range of $T-XCO_2$ conditions.

  • PDF

The Study of Structure and Petrology of the Area between Hachonri and Weolgulri, Jecheon-gun (제천군(提川郡) 하천리(荷川里)-월굴리(月窟里) 지역(地域)의 지질구조(地質構造)와 암석학적(岩石學的) 연구(硏究))

  • Kim, Ok Joon;Yu, Kang Min
    • Economic and Environmental Geology
    • /
    • v.10 no.1
    • /
    • pp.19-35
    • /
    • 1977
  • The study area is located in between Hacheonri and Weolgulri, Jecheon-gun where the formations of Okcheon group and Chosun group come in contact and the stratigraphy and geological age of the Okcheon group have been debated among previous workers. The dolomitic limestone which distributed at Cheongam and Dumusil is clarified as the Hyangsanri dolomite formation and the quartzite distributed at Cheongam and Howeunri as Taehyangsan quartzite formation. The newly named Soorumsan schist interbedded in the Great Limestone Series was previously classified Seochangri formation. It is also classified that the formation formerly named as Seochangri was divided into newly named Manji schist which seems to be correlated to Kemyeongsan and Munjuri formation. The formation formerly named as Buknori is clarified as Hwanggangri formation. The Samtaesan formation has been clarified as the lower and upper limestone beds which belong to the Great Limestone Series. The area divided into two groups, that is, Okcheon system of Pre-cambrian age occupies western part and the Great Limestone Series of Chosun system of Cambro-Ordovician age eastern part of this area. Okcheon system consists in ascending order of Manji schist, Hyangsanri dolomite, Taehyangsan quartzite, Munjuri schist, and Hwanggangri formation of meta-tillite. The Great Limestone Series of Chosun group consists in ascending order of lower limestone, Soorumsan schist, Hoosanri quartzite and upper limestone formations. Busan augen gneiss seems to be igneous origin. Unmetamorphosed shale interbed can be traced in the Soorumsan schist. Previous study (Kims, 1974) reveals that meta-volcanic rocks are distributed from south to north along contact zone of the Okcheon and Chosun groups, and it has been confirmed that the meta-volcanics crop out continuously from the adjacent southern quardrangle into the southern part of the area studied, intruding along the fault zone between the Okcheon and Chosun groups which seems to be upthrust as in the area south. This evidence coincides with Kims' work (1974) which states that the Precambrian Okcheon group is largely overturned and thrusted over the Chosun group.

  • PDF

Genesis of the Lead-Zinc-Silver and Iron Deposits of the Janggun Mine, as Related to Their Structural Features Structural Control and Wall Rock Alteration of Ore-Formation (장군광산(將軍鑛山)의 연(鉛)·아연(亞鉛)·은(銀) 및 철(鐵) 광상(鑛床)의 성인(成因)과 지질구조(地質構造)와의 관계(關係) - 광상(鑛床) 생성(生成)의 지질구조(地質構造) 규제(規制)와 모암(母岩)의 변질(變質) -)

  • Lee, Hyun Koo;Ko, Suck Jin;Naoya, Imai
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.161-181
    • /
    • 1990
  • The lead-zinc-silver-iron deposits from the Janggun mine are of hydrothermal-metasomatic origin, characterized by the marked hydrothermal alteration of the wallrocks, such as hydrothermal manganese enrichment of carbonate rocks, silicification, chloritization, sericitization, montmorillonitization and argillic alteration. The ore deposits have been emplaced within the Janggun Limestone of Cambro-Ordovician age at the immediate contacts with apophyses injected from the Chunyang Granite plutons of Late Jurrasic age. They have been structurally controlled by fractures in the carbonate rocks and the irregular intrusive contacts of granitic rocks, and are closely associated with hypogene manganese carbonate deposits. In the mine nine seperate orebodies are being mined. On the basis of the petrological study, hydrothermal alteration zone of this mine may be divided into the following four zones from wallrock to orebody. (I) Primary calcite and dolomite zone${\rightarrow}$(II) dolomitic limestone zone${\rightarrow}$(III) dolomitic zone${\rightarrow}$(IV) rhodochrosite zone${\rightarrow}$ orebody. There was not recongnized Mn and Fe elements in the primary calcite and dolomite zone. But, in the dolomitic limestone and dolomite zone, calcite and dolomite were subjected to weak hydrothermal manganese enrichment and the grade of the manganese enrichment increase oreward. By means of electron probe microanalysis, it was found that manganoan dolomite occured between primary dolomite grains, cross the cleavage of the primary dolomite and around the dolomite grains. Above these result supports that the Janggun manganese carbonate deposits are of hydrothermal metasomatic origin.

  • PDF