• Title/Summary/Keyword: lime stabilization

Search Result 87, Processing Time 0.027 seconds

CO2 sequestration and heavy metal stabilization by carbonation process in bottom ash samples from coal power plant

  • Ramakrishna., CH;Thriveni., T;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.74-83
    • /
    • 2017
  • Coal-fired power plants supply roughly 50 percent of the nation's electricity but produce a disproportionate share of electric utility-related air pollution. Coal combustion technology can facilitate volume reduction of up to 90%, with the inorganic contaminants being captured in furnace bottom ash and fly ash residues. These disposal coal ash residues are however governed by the potential release of constituent contaminants into the environment. Accelerated carbonation process has been shown to have a potential for improving the chemical stability and leaching behavior of bottom ash residues. The aim of this work was to quantify the volume of $CO_2$ that could be sequestrated with a view to reducing greenhouse gas emissions and stabilize the contaminated heavy metals from bottom ash samples. In this study, we used PC boiler bottom ash, Kanvera reactor (KR) slag and calcined waste lime for measuring chemical analysis and heavy metals leaching tests were performed and also the formation of calcite resulting from accelerated carbonation process was investigated by thermo gravimetric and differential thermal analysis (TG/DTA).

Effects of Amendments on Heavy Metal Uptake by Leafy, Root, Fruit Vegetables in Alkali Upland Soil (염기성 밭 토양에서 안정화제에 의한 엽채류, 근채류, 과채류 작물들의 중금속 전이 특성)

  • Kim, Min-Suk;Min, Hyun-Gi;Lee, Sang-Hwan;Kim, Jeong-Gyu
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Various types of amendments have been studied for heavy metal stabilization in soil. However, researches on the effect of amendments on alkali soil and their effects on the plants at various edible parts are insufficient. The aim of this study was to evaluate the stabilization efficiency of heavy metals and their transfer into edible parts of food crops. Abandoned mine area was selected and 3 types of amendments (lime stone, LS; steel slag, SS; acid mine drainage sludge, AMDS) was applied with 3% (w/w). in field. After 6 month aging, Chinese cabbage (leafy), bok choy (leafy), garlic (root) and red pepper (fruit) were transplanted and cultivated. For chemical assessment, total concentration and bioavailability using Mehlich-3 solution were determined. For biological assessment, fresh weight and heavy metal uptakes were analyzed. It was revealed that AMDS reduced bioavailability most effectively, resulting in the decrease in heavy metal concentration in edible parts of all crops. When explaining the heavy metal uptake of plants, the bioavailability was more appropriate than the total contents of soil heavy metals. Therefore, bioavailability-based further research and management practices should be carried out continuously for the sustainable environment management, safe crop production, and human health risk reduction.

Evaluation of the Effect of Different Application Ratios of Lime-treated Fertilizer Mixed with Food Waste on Chinese Cabbage (Brassica rapa L.) Yield and Soil Chemical Properties (음식물류폐기물 혼합 석회처리비료 사용량에 따른 배추(Brassica rapa L.) 수량 및 토양 화학성 평가)

  • Young-Jae Jeong;Sang-Geum Lee;Seong-Heon Kim;Sang-Ho Jeon;Youn-Hae Lee;Soon-Ik Kwon;Jae-Hong Shim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.2
    • /
    • pp.81-89
    • /
    • 2023
  • Lime-treated fertilizer (LTF) is manufactured using the lime stabilization method with food waste. LTF is effective in neutralizing acidic soil, improving nutrient and organic matter content in soil, and increasing crop productivity. However, excessive use of LTF in agricultural land can have undesirable effects, such as reduced crop growth and nutrient accumulation in soil. This study was evaluated the effect of different application ratios of LTF on the crop yield index (%), nutrient (N, P2O5, K2O) uptake index (%), and soil chemical properties. The following treatments were applied: untreated (UT), NPK (NPK), NPK+calcium hydroxide (CH), and NPK+1-, 2-, 4-, and 8-times of LTF (LTF1, 2, 4, and 8). The yield index for LTF1 was the highest among different LTF treatments. Moreover the yield index for spring and winter cabbage in LTF1 treatment was 10% and 21% higher, respectively, than that in NPK treatment. The yield and nutrient indices were decreased with the increase in LTF application ratio. The soil pH and EC tended to increase with the increase in LTF ratio, and were the highest at 8.2 and 2.1, respectively, after cultivation for LTF8 (P<0.05). With the increase in soil pH, the soil inorganic nitrogen (NH4-N, NH3-N) and available phosphate (Av. P2O5) levels were decreased (P<0.05). Our results suggest that LTF1 (643 kg 10a-1) is an appropriate ratio for improving soil chemical properties and increasing crop yield.

Strength Characteristics of the Soil Mixed with a Natural Stabilizer (친환경 토양안정재를 혼합한 지반의 강도특성)

  • Kwon, Youngcheul;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • This article aims to find method to mix a harmless hardening agent and soil generated during construction to make paving materials. The main purpose of this research is to get rid of the harmfulness(Chromium (VI), etc.) of cement which has been generally and frequently used as a hardening agent and strengthen it so that it can be used for the general foundation solidification and stabilization of civil engineering/construction structures such as dredging soil treatment, marine structure foundation treatment, surface soil stabilization, and river bank erosion prevention. NSS(Natural Stabilizer Soil) used for this study takes as its chief ingredient the mixture of lime and staple fibers extracted from natural fibers. It increases the shearing strength of soil that it improves the support and durability of the foundation and prevents flooding and frost as well. The pH measured to know its eco-friendliness was 6.67~7.15, and according to the migration testing, only Pb and CN were lower than the standards, so it can be said that NSS has almost no harmful components in it. According to the result of uniaxial strength testing, when the mixture ratio of weathered soil to NSS was 6%, about 1,850kpa strength was expressed. And according to the result of CBR. testing to figure out its appropriateness as a paving material, the CBR of the foundation was 4%~6%. But when the mixture ratio of NSS is over 6%, the water immersion CBR. is over 100%; thus, it is expected that it will show great utility as a paving material.

Lead Stabilization in Soil Amended with Lime Waste: An Extended X-ray Absorption Fine Structure (EXAFS) Investigation

  • Lim, Jung Eun;Lee, Sang Soo;Yang, Jae E.;Ok, Yong Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.443-450
    • /
    • 2014
  • To determine Pb species in soils following the immobilization process, sequential extraction has been used despite the possibility of overestimating Pb species from unintended reactions during chemical extraction. Meanwhile, the application of extended X-ray absorption fine structure (EXAFS) has been shown to provide a more precise result than chemical extraction. In this study, the immobilization of Pb in contaminated soils treated with liming materials such as oyster shell (OS) or eggshell (ES) was evaluated with thermodynamic modelling and EXAFS analysis. Thermodynamic modelling by visual MINTEQ predicted the precipitation of $Pb(OH)_2$ in OS and ES treated soils. In particular, the values of saturation index (SI) for $Pb(OH)_2$ in OS (SI=0.286) and ES (SI=0.453) treated soils were greater than in the control soil (SI=0.281). Linear combination fitting (LCF) analysis confirmed the presence of $C_{12}H_{10}O_{14}Pb_3$ (lead citrate, 44.7%) by citric acid from plant root, Pb-gibbsite (Pb adsorbed gibbsite, 26.4%), and Pb-kaolinite (Pb adsorbed kaolinite, 20.3%) in the control soil. On the other hand, $Pb(OH)_2$ (16.8%), Pb-gibbsite (39.3%), and Pb-kaolinite (25.6%) were observed in the OS treated soil and $Pb(OH)_2$ (55.2%) and Pb-gibbsite (33.8%) were also confirmed in the ES treated soil. Our results indicate that the treatment with OS and ES immobilizes Pb by adsorption of Pb onto the soil minerals as a result of the increase in soil negative charge and the formation of stable $Pb(OH)_2$ under high pH condition of soils.

A Study on the Admixture Stabilization of Domestic Coal Ashes as the Fill Material (성토재로서 석탄회의 안정제 혼합 효과에 관한 연구)

  • 박은영;김진만
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.37-50
    • /
    • 1995
  • Recently, the treatment of coal ashes produced from thermal electric power plants have been raised as a serious problem in according to the increasing of electric power demand in Korea. This paper deals with a re -use method of coal ash as a fill material. Two domestic coal ashes are mixed with cement and lime to improve the mechanical properties of coal ash. The mechanical properties such as compressive strength, compressive deformation, permeability and frost heaving property are investigated in according to the change of admixture rate, curing temperature and curing time. In this study, it is found coal ash (fly ash+bottom ash) and fly ash with 2%~3% cement can be used as a fill material, respectively. It is also found the frost heaving properties of coal ash is effectively improved by the mixture of 6%~9% cement.

  • PDF

Studies on Restoration of Forest-Floor Vegetation Devastated by Recreational Trampling (I) -Seeding, Fertilizing and Soil Surface Treatment Effect on Restoration of Forest-Floor Vegetation- (답압(踏壓)으로 훼손(毁損)된 임간나지(林間裸地)의 임상식생복원(林床植生復元)에 관한 연구(硏究)(I) -임상식생복원(林床植生復元)에 미치는 파종(播種), 시비(施肥) 및 표토처리효과 (表土處理效果)-)

  • Oh, Koo Kyoon;Woo, Bo Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.1
    • /
    • pp.53-65
    • /
    • 1992
  • For elucidating effective methods of restoration of forest recreational sites where management goals are maintaining naturalness and conserving natural ecosystem, seeding, fertilization and soil surface treatment were used for four years at the devastated forest-floor. For restoration of forest-floor vegetation, factorial experiment was used with a split plot design(main plot : fertilization, subplot : soil surface${\times}$seeding) and a randomized complete block design (fertilization${\times}$seeding) at the Kwanaksan Aboretum, Anyang, Kyonggido. Results were summarized as follows : Soil surface softening with tipping and ripping and straw-mat mulching (70% coverage) treatment was effective on germination, survival and growth of seeded vegetation at devastated forest-floor. Especially, straw-mat mulching treatment was effective on soil surface stabilization and seedling's survival at eroded soil surface, while complete soil surface softening treatment was effective on germination, survival and early growth of tree species of late-successional series. Introducing seeds of native species of pioneer or early-successional series, with good growth capability in barren soil was effective on rapid restoration in devastated forest-floor with its soil surface previously compacted and its surviving seeds washed away. When the seeding and straw-mat mulching after partial soil surface softening with tipping and ripping treatment were employed, it took about three years to restore the devastated forest-floor where surface erosion had been undertaken for an extended period of time and where naturally surviving seeds of native species had been washed away. Softening treatment of soil surface was effective for about two years, and seeding and soil surface treatment increased number of seedlings and improved soil surface environment through fixing of movement of the fallen leaves. Fertilizing effect was not oberserved, mainly due to seeding exposure and poor physical condition including soil surface erosion, low soil water potential and drought, etc, at the field experimental site. However, application of nitrogen and phosphate fertilizers was effective on seedling survival of the species in late-successional series, while lime application adversely affected the seedling survival.

  • PDF