DOI QR코드

DOI QR Code

Lead Stabilization in Soil Amended with Lime Waste: An Extended X-ray Absorption Fine Structure (EXAFS) Investigation

  • Lim, Jung Eun (Korea Biochar Research Center & Department of Biological Environment, Kangwon National University) ;
  • Lee, Sang Soo (Korea Biochar Research Center & Department of Biological Environment, Kangwon National University) ;
  • Yang, Jae E. (Korea Biochar Research Center & Department of Biological Environment, Kangwon National University) ;
  • Ok, Yong Sik (Korea Biochar Research Center & Department of Biological Environment, Kangwon National University)
  • Received : 2014.08.06
  • Accepted : 2014.11.12
  • Published : 2014.12.31

Abstract

To determine Pb species in soils following the immobilization process, sequential extraction has been used despite the possibility of overestimating Pb species from unintended reactions during chemical extraction. Meanwhile, the application of extended X-ray absorption fine structure (EXAFS) has been shown to provide a more precise result than chemical extraction. In this study, the immobilization of Pb in contaminated soils treated with liming materials such as oyster shell (OS) or eggshell (ES) was evaluated with thermodynamic modelling and EXAFS analysis. Thermodynamic modelling by visual MINTEQ predicted the precipitation of $Pb(OH)_2$ in OS and ES treated soils. In particular, the values of saturation index (SI) for $Pb(OH)_2$ in OS (SI=0.286) and ES (SI=0.453) treated soils were greater than in the control soil (SI=0.281). Linear combination fitting (LCF) analysis confirmed the presence of $C_{12}H_{10}O_{14}Pb_3$ (lead citrate, 44.7%) by citric acid from plant root, Pb-gibbsite (Pb adsorbed gibbsite, 26.4%), and Pb-kaolinite (Pb adsorbed kaolinite, 20.3%) in the control soil. On the other hand, $Pb(OH)_2$ (16.8%), Pb-gibbsite (39.3%), and Pb-kaolinite (25.6%) were observed in the OS treated soil and $Pb(OH)_2$ (55.2%) and Pb-gibbsite (33.8%) were also confirmed in the ES treated soil. Our results indicate that the treatment with OS and ES immobilizes Pb by adsorption of Pb onto the soil minerals as a result of the increase in soil negative charge and the formation of stable $Pb(OH)_2$ under high pH condition of soils.

Keywords

References

  1. Adriano, D.C. 2001. Trace elements in terrestrial environments, second edition. Springer-Verlag, New York, USA.
  2. Ahmad, M., Y. Hashimoto, D.H. Moon, S.S. Lee, and Y.S. Ok. 2012a. Immobilization of lead in a Korean military shooting range soil using eggshell waste: an integrated mechanistic approach. J. Hazard. Mater. 209-210:392-401. https://doi.org/10.1016/j.jhazmat.2012.01.047
  3. Ahmad, M., S.S. Lee, J.E. Lim, S.E. Lee, J.S. Cho, D.H. Moon, Y. Hashimoto, and Y.S. Ok. 2014a. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extraction. Chemosphere. 95:433-441. https://doi.org/10.1016/j.chemosphere.2013.09.077
  4. Ahmad, M., S.S. Lee, J.E. Yang, H.M. Ro, Y.H. Lee, and Y.S. Ok. 2012b. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotox. Environ. Safe. 79:225-231. https://doi.org/10.1016/j.ecoenv.2012.01.003
  5. Ahmad, M., D.H. Moon, K.J. Lim, C.L. Shope, S.S. Lee, A.R.A. Usman, K.R. Kim, J.H. Park, S.O. Hur, J.E. Yang, and Y.S. Ok. 2012c. An assessment of the utilization of waste resources for the immobilization of Pb and Cu in the soil from a Korean military shooting range. Environ. Earth Sci. 67:1023-1031. https://doi.org/10.1007/s12665-012-1550-1
  6. Ahmad, M., A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, and Y.S. Ok. 2014b. Biochar as a sorbent for contaminant management in soil and water: A review, Chemosphere. 99:19-33. https://doi.org/10.1016/j.chemosphere.2013.10.071
  7. Ajmone-Marsan, F. and M. Biasioli. 2010. Trace elements in soils of urban areas. Water Air Soil Poll. 213:121-143. https://doi.org/10.1007/s11270-010-0372-6
  8. Almaroai, Y.A., A.R.A. Usman, M. Ahmad, D.H. Moon, J.S. Cho, Y.S. Joo, Y.K. Joo, C. Jeon, S.S. Lee, and Y.S. Ok. 2014. Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environ. Earth Sci. 71:1289-1296. https://doi.org/10.1007/s12665-013-2533-6
  9. Awad, Y.M., E. Blagodatskaya, Y.S. Ok, and Y. Kuzyakov. 2012. Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by $^{14}C$ and enzyme activities. Eur. J. Soil Biol. 48:1-10.
  10. Awad, Y.M., E. Blagodatskaya, Y.S. Ok, and Y. Kuzyakov. 2013. Effects of polyacrylamide, biopolymer, and biochar on the decomposition of $^{14}C$-labelled maize residues and on their stabilization in soil aggregates. Eur. J. Soil Sci. 64:488-499. https://doi.org/10.1111/ejss.12034
  11. Cao, X., L. Ma, Y. Liang, B. Gao, and W. Harris. 2011. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ. Sci. Technol. 45:4884-4889. https://doi.org/10.1021/es103752u
  12. Chen, Y.X., Q. Lin, Y.M. Luo, Y.F. He, S.J. Zhen, Y.L. Yu, G.B. Tian, and M.H. Wong. 2003. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere. 50:807-811. https://doi.org/10.1016/S0045-6535(02)00223-0
  13. Gleyzes, C., S. Tellier, and M. Astruc. 2002. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trend Anal. Chem. 21:451-467. https://doi.org/10.1016/S0165-9936(02)00603-9
  14. Hashimoto, Y., H. Matsufuru, M. Takaoka, H. Tanida, and T. Sato. 2009. Impacts of chemical amendments and plant growth on lead speciation and enzyme activities in a shooting range soil: An X-ray absorption fine structure investigation. J. Environ. Qual. 38:1420-1428. https://doi.org/10.2134/jeq2008.0427
  15. Hashimoto, Y., N. Yamaguchi, M. Takaoka, and K. Shiota. 2011. EXAFS speciation and phytoavailability of Pb in a contaminated soil amended with compost and gypsum. Sci. Total Environ. 409:1001-1007. https://doi.org/10.1016/j.scitotenv.2010.11.018
  16. Ippolito, J.A., D.G. Strawn, K.G. Scheckel, J.M. Novak, M. Ahmedna, and M.A.S. Niandou. 2012. Macroscopic and molecular investigations of copper sorption by a steam-activated biochar. J. Environ. Qual. 41:1150-1156. https://doi.org/10.2134/jeq2011.0113
  17. Kelly, S.D., D. Hesterberg, and B. Ravel. 2008. Chapter 14 -Analysis of soils and minerals using X-ray absorption spectroscopy, p. 387-463. In: A.L. Ulery and L.R. Drees (eds.). Methods of Soil Analysis. Part 5 - Mineralogical methods. Soil Science Society of America, USA.
  18. Kostarelos, K., D. Reale, D. Dermatas, E. Rao, and D.H. Moon. 2006. Optimum dose of lime and fly ash for treatment of hexavalent chromium-contaminated soil. Water Air Soil Poll.: Focus. 6:171-189. https://doi.org/10.1007/s11267-005-9005-2
  19. Kumpiene, J., A. Lagerkvist, and C. Maurice. 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review. Waste Manage. 28:215-225. https://doi.org/10.1016/j.wasman.2006.12.012
  20. Lazarevic, S., I. Jankovic-Castvan, D. Jovanovic, S. Milonjic, D. Janackovic, and R. Petrovic. 2007. Adsorption of $Pb^{2+}$, $Cd^{2+}$ and $Sr^{2+}$ ions onto natural and acid-activated sepiolites. Appl. Clay Sci. 37:47-57. https://doi.org/10.1016/j.clay.2006.11.008
  21. Lee, S.H., J.S. Lee, Y.J. Choi, and J.G. Kim. 2009. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere. 77:1069-1075. https://doi.org/10.1016/j.chemosphere.2009.08.056
  22. Lim, J.E., M. Ahmad, S.S. Lee, C.L. Shope, Y. Hashimoto, K.R. Kim, A.R.A. Usman, J.E. Yang, and Y.S. Ok. 2013a. Effects of lime-based waste materials on immobilization and phytoavailability of cadmium and lead in contaminated soil. Clean-Soil Air Water 41:1235-1241. https://doi.org/10.1002/clen.201200169
  23. Lim, J.E., M. Ahmad, A.R.A. Usman, S.S. Lee, W.T. Jeon, S.E. Oh, J.E. Yang, and Y.S. Ok. 2013b. Effect of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil. Environ. Earth Sci. 69:11-20. https://doi.org/10.1007/s12665-012-1929-z
  24. Lindsay, W.L. 1979. Chemical Equilibria in Soils, John Wiley & Sons Inc., USA.
  25. MOE. 2014. The Korean warning standard for agricultural land. Ministry of Environment, Sejong, Korea.
  26. Mohan, D., A. Sarswat, Y.S. Ok, and C.U. Pittman Jr. 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review. Bioresource Technol. 160:191-202. https://doi.org/10.1016/j.biortech.2014.01.120
  27. Moon, D.H., K.W. Kim, I.H. Yoon, D.G. Grubb, D.Y. Shin, K.H. Cheong, H.I. Choi, Y.S. Ok, and J.H. Park. 2011. Stabilization of arsenic-contaminated mine tailings using natural and calcined oyster shells. Environ. Earth Sci. 64:597-605. https://doi.org/10.1007/s12665-010-0890-y
  28. Moon, D.H., J.W. Park, Y.Y. Chang, Y.S. Ok, S.S. Lee, M. Ahmad, A. Koutsospyros, J.H. Park, and K. Baek. 2013. Immobilization of lead in contaminated firing range soil using biochar. Environ. Sci. Pollut. Res. 20:8464-8471. https://doi.org/10.1007/s11356-013-1964-7
  29. MRC. 2007. Annual report: Development of soil cover engineering protocol for remediation of heavy metal contaminated soil. Mine Reclamation Corporation, Seoul, Korea.
  30. NAAS. 2014. Korean Soil Information System. http://soil.rda.go.kr/soil/index.jsp.
  31. Ok, Y.S., S.C. Kim, D.G. Kim, J.G. Skousen, J.S. Lee, Y.W. Cheong, S.J. Kim, and J.E. Yang. 2011a. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environ. Geochem. Heal. 33:23-30.
  32. Ok, Y.S., S.S. Lee, W.T. Jeon, S.E. Oh, A.R.A. Usman, and D.H. Moon. 2011b. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environ. Geochem. Heal. 33:31-39. https://doi.org/10.1007/s10653-010-9362-2
  33. Ok, Y.S., J.E. Lim, and D.H. Moon. 2011c. Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environ. Geochem. Heal. 33:83-91. https://doi.org/10.1007/s10653-010-9329-3
  34. Ok, Y.S., S.E. Oh, M. Ahmad, S. Hyun, K.R. Kim, D.H. Moon, S.S. Lee, K.J. Lim, W.T. Jeon, and J.E. Yang. 2010. Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environ. Earth Sci. 61:1301-1308. https://doi.org/10.1007/s12665-010-0674-4
  35. Ok, Y.S., A.R.A. Usman, S.S. Lee, S.A.M. Abd El-Azzem, B. Choi, Y. Hashimoto, and J.E. Yang. 2011d. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere. 85:677-682. https://doi.org/10.1016/j.chemosphere.2011.06.073
  36. Paulose, B., S.P. Datta, R.K. Rattan, and P.K. Chhonkar. 2007. Effect of amendments on the extractability, retention and plant uptake of metals on a sewage-irrigated soil. Environ. Pollut. 146:19-24. https://doi.org/10.1016/j.envpol.2006.06.016
  37. Puls, R.W., R.M. Powell, D. Clark, and C.J. Eldred. 1991. Effects of pH, solid/solution ratio, ionic strength, and organic acids on Pb and Cd sorption on kaolinite. Water Air Soil Poll. 57-58: 423-430. https://doi.org/10.1007/BF00282905
  38. Ravel, B. and M. Newville. 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12:537-541. https://doi.org/10.1107/S0909049505012719
  39. Ryan, J.A., P. Zhang, D. Hesterberg, J. Chou, and D.E. Sayers. 2001. Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite. Environ. Sci. Technol. 35:3798-3803. https://doi.org/10.1021/es010634l
  40. Scheckel, K.G., J.A. Ryan, D. Allen, and N.V. Lescano. 2005. Determining speciation of Pb in phosphate-amended soils: Method limitations. Sci. Total Environ. 350:261-272. https://doi.org/10.1016/j.scitotenv.2005.01.020
  41. Schwab, A.P., D.S. Zhu, and M.K. Banks. 2008. Influence of organic acids on the transport of heavy metals in soil. Chemosphere. 72:986-994. https://doi.org/10.1016/j.chemosphere.2008.02.047
  42. Sparks, D.L. 2002. Environmental Soil Chemistry, Second Edition, Academic Press, San Diego, USA.
  43. Sun, Y., G. Sun, Y. Xu, L. Wang, X. Liang, and D. Lin. 2013. Assessment of sepiolite for immobilization of cadmium-contaminated soils. Geoderma. 193-194:149-155. https://doi.org/10.1016/j.geoderma.2012.07.012
  44. Tessier, A., P.G.C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:844-851. https://doi.org/10.1021/ac50043a017
  45. Zhao, X.L. and S. Masaihiko. 2007. Amelioration of cadmium polluted paddy soils by porous hydrated calcium silicate. Water Air Soil Poll. 183:309-315. https://doi.org/10.1007/s11270-007-9379-z