• Title/Summary/Keyword: lignocelluloses

Search Result 7, Processing Time 0.009 seconds

Functional Characteristics and Diversity of a Novel Lignocelluloses Degrading Composite Microbial System with High Xylanase Activity

  • Guo, Peng;Zhu, Wanbin;Wang, Hui;Lu, Yucai;Wang, Xiaofen;Zheng, Dan;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.254-264
    • /
    • 2010
  • To obtain an efficient natural lignocellulolytic complex enzyme, we screened an efficient lignocellulose-degrading composite microbial system (XDC-2) from composted agricultural and animal wastes amended soil following a long-term directed acclimation. Not only could the XDC-2 degrade natural lignocelluloses, but it could also secrete extracellular xylanase efficiently in liquid culture under static conditions at room temperature. The XDC-2 degraded rice straw by 60.3% after fermentation for 15 days. Hemicelluloses were decomposed effectively, whereas the extracellular xylanase activity was dominant with an activity of 8.357 U/ml on day 6 of the fermentation period. The extracellular crude enzyme noticeably hydrolyzed natural lignocelluloses. The optimum temperature and pH for the xylanase activity were $40^{\circ}C$ and 6.0. However, the xylanase was activated in a wide pH range of 3.0-10.0, and retained more than 80% of its activity at $25-35^{\circ}C$ and pH 5.0-8.0 after three days of incubation in liquid culture under static conditions. PCR-DGGE analysis of successive subcultures indicated that the XDC-2 was structurally stable over long-term restricted and directed cultivation. Analysis of the 168 rRNA gene clone library showed that the XDC-2 was mainly composed of mesophilic bacteria related to the genera Clostridium, Bacteroides, Alcaligenes, Pseudomonas, etc. Our results offer a new approach to exploring efficient lignocellulolytic enzymes by constructing a high-performance composite microbial system with synergistic complex enzymes.

Degradation of Lignocelluloses in Rice Straw by BMC-9, a Composite Microbial System

  • Zhao, Hongyan;Yu, Hairu;Yuan, Xufeng;Piao, Renzhe;Li, Hulin;Wang, Xiaofen;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.585-591
    • /
    • 2014
  • To evaluate the potential utility of pretreatment of raw biomass with a complex microbial system, we investigated the degradation of rice straw by BMC-9, a lignocellulose decomposition strain obtained from a biogas slurry compost environment. The degradation characteristics and corresponding changes in the bacterial community were assessed. The results showed that rapid degradation occurred from day 0 to day 9, with a peak total biomass bacterium concentration of $3.3{\times}10^8$ copies/ml on day 1. The pH of the fermentation broth declined initially and then increased, and the mass of rice straw decreased steadily. The highest concentrations of volatile fatty acid contents (0.291 mg/l lactic acid, 0.31 mg/l formic acid, 1.93 mg/l acetic acid, and 0.73 mg/l propionic acid) as well as the highest xylanse activity (1.79 U/ml) and carboxymethyl cellulase activity (0.37 U/ml) occurred on day 9. The greatest diversity among the microbial community also occurred on day 9, with the presence of bacteria belonging to Clostridium sp., Bacillus sp., and Geobacillus sp. Together, our results indicate that BMC-9 has a strong ability to rapidly degrade the lignocelluloses of rice straw under relatively inexpensive conditions, and the optimum fermentation time is 9 days.

Biofuel: Current Status in Production and Research

  • Yu, Ju-Kyung;Park, Soon Ki
    • Korean Journal of Breeding Science
    • /
    • v.42 no.2
    • /
    • pp.121-128
    • /
    • 2010
  • Finding alternative and renewable energy sources has become an important goal for plant scientists, especially with the demand for energy increasing worldwide and the supply of fossil fuel being depleted. The most important biofuel to date is bioethanol which is produced from sugars (sucrose and starch) found in corn and sugarcane. Second generation bioethanol is targeting studies that would allow the use of the cell wall (lignocellulose) as a source of carbon by non-food plants. Plant scientists, including breeders, agronomists, physiologists and molecular biologists, are working towards the development of new and improved energy crops especially, how to design crops for bioenergy production and increased biomass generation for biofuel purposes. This review focuses on: i) the current status of first generation bioenergy production, ii) the limitations of first and second generation bioenergy, and iii) ongoing research to overcome challenging issues in second generation bioenergy.

Improved Production of Ligninase and Laccase by Phanerochaete chrysosporium and Ceriporiopsis subvermispora (Phanerochaete chrysosporium과 Ceriporiopsis subvermispora 균주(菌株)의 Ligninase 및 Laccase 생산최적조건에 관한 연구(硏究))

  • Kang, An-Seok;Cha, Dong-Yeul;Kim, Kyung-Soo;Hong, In-Pyo;Croan, Suki C.;Yu, Seung-Hun
    • The Korean Journal of Mycology
    • /
    • v.22 no.3
    • /
    • pp.254-259
    • /
    • 1994
  • The ever increasing demand for energy and the shortage of resources all over the world have generated interest in recycling renewable sources such as lignocelluloses which otherwise would go to waste and cause environmental pollution. Lignin is the incrustation material for cellulose and hemicellulose, therefore, cellulose and hemicellulose are not easily degraded. Recycling lignocellulosic wastes as agricultural material are benefit to everybody and everything. In order to improve ligninase and laccase production of Phanerochaete chrysosporium, BKM-F-1767 and Ceriporiopsis subvermispora, FP 90031-SP, were compared. The ligninase activity of P. chrysosporium was maximum on day 4.5 of shaking culture at 150 rpm 2.5 cm in a back and forth cycle. The laccase activity of C. subvermispora was maximum on day 5.5 for 2% malt extract+0.1% yeast extract+0.1% Tween 20+6 mM Benzyl alcohol culture medium at stationary state.

  • PDF

Bioconversion of Lignocellulosic Materials with the Contribution of a Multifunctional GH78 Glycoside Hydrolase from Xylaria polymorpha to Release Aromatic Fragments and Carbohydrates

  • Liers, Christiane;Ullrich, Rene;Kellner, Harald;Chi, Do Huu;Quynh, Dang Thu;Luyen, Nguyen Dinh;Huong, Le Mai;Hofrichter, Martin;Nghi, Do Huu
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1438-1445
    • /
    • 2021
  • A bifunctional glycoside hydrolase GH78 from the ascomycete Xylaria polymorpha (XpoGH78) possesses catalytic versatility towards both glycosides and esters, which may be advantageous for the efficient degradation of the plant cell-wall complex that contains both diverse sugar residues and esterified structures. The contribution of XpoGH78 to the conversion of lignocellulosic materials without any chemical pretreatment to release the water-soluble aromatic fragments, carbohydrates, and methanol was studied. The disintegrating effect of enzymatic lignocellulose treatment can be significantly improved by using different kinds of hydrolases and phenoloxidases. The considerable changes in low (3 kDa), medium (30 kDa), and high (> 200 kDa) aromatic fragments were observed after the treatment with XpoGH78 alone or with this potent cocktail. Synergistic conversion of rape straw also resulted in a release of 17.3 mg of total carbohydrates (e.g., arabinose, galactose, glucose, mannose, xylose) per gram of substrate after incubating for 72 h. Moreover, the treatment of rape straw with XpoGH78 led to a marginal methanol release of approximately 17 ㎍/g and improved to 270 ㎍/g by cooperation with the above accessory enzymes. In the case of beech wood conversion, the combined catalysis by XpoGH78 and laccase caused an effect comparable with that of fungal strain X. polymorpha in woody cultures concerning the liberation of aromatic lignocellulose fragments.

Analysis of gut bacterial diversity and exploration of cellulose-degrading bacteria in xylophagous insects (목질섭식곤충의 장내 세균 다양성 분석 및 섬유소 분해균 탐색)

  • Choi, Min-Young;Ahn, Jae-Hyung;Song, Jaekyeong;Kim, Seong-Hyun;Bae, Jin-Woo;Weon, Hang-Yeon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.209-220
    • /
    • 2015
  • In this study, gut bacterial communities in xylophagous insects were analyzed using the pyrosequencing of 16S rRNA genes for their potential biotechnological applications in lignocelluloses degradation. The result showed that operational taxonomic units (OTUs), species richness and diversity index were higher in the hindgut than in the midgut of all insect samples analyzed. The dominant phyla or classes were Firmicutes (54.0%), Bacteroidetes (14.5%), ${\gamma}-Proteobacteria$ (12.3%) in all xylophagous insects except for Rhinotermitidae. The principal coordinates analysis (PCoA) showed that the bacterial community structure mostly clustered according to phylogeny of hosts rather than their habitats. In our study, the two carboxymethyl cellulose (CMC)-degrading isolates which showed the highest enzyme activity were most closely related to Bacillus toyonensis $BCT-7112^T$ and Lactococcus lactis subsp. hordniae $NCDO\;2181^T$, respectively. Cellulolytic enzyme activity analysis showed that ${\beta}-1,4-glucosidase$, ${\beta}-1,4-endoglucanase$ and ${\beta}-1,4-xylanase$ were higher in the hindgut of Cerambycidae. The results demonstrate that xylophagous insect guts harbor diverse gut bacteria, including valuable cellulolytic bacteria, which could be used for various biotechnological applications.

Behaviors of Glucose Decomposition during Dilute-Acid Hydrolysis of Lignocellulosic Biomass (목질계 바이오매스의 묽은 산 가수분해 공정에서 포도당 분해물 거동)

  • Jeong, Tae-Su;Oh, Kyeong-Keun
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.267-272
    • /
    • 2009
  • During a dilute acid hydrolysis, degradation products are formed or liberated by pre-treatment of lignocelluloses depend on both the biomass and the pretreatment conditions such as temperature, time, pressure, pH, redox conditions, and addition of catalysts. In lignocellulosic biomass, sugars can be degraded to furfural which is formed from pentoses and 5-hydroxymethulfurfural (HMF) from hexoses. 5-HMF can be further degraded, forming levulinic acid and formic acid. Acetate is liberated from hemicellulose during hydrolysis. Some decomposed compounds hinder the subsequent bioconversion of the solubilized sugars into desired products, reducing conversion yields and rates during fermentation. In the present work, samples of rapeseed strawwere hydrolyzed to study the optimal pretreatment condition by assessing yields of sugars and decomposed products obtained under different reaction conditions ($H_2SO_4$ 0.5-1.25% (w/w), reaction time 0-20 min and temperature range 150-220 C). A careful analytical investigation of acid hydrolyzate of rapeseed straw has not yet been undertaken, and a well-closed mass balance for the hydrolyzate in general is necessary to verify the productivity and economic predictions for this process.