• Title/Summary/Keyword: lightweight soil

Search Result 102, Processing Time 0.024 seconds

Material and Behavior Characteristics of Lightweight Embankment for Road Constructed on Soft Ground (연약지반에 시공된 도로용 경량성토체의 재료 및 거동특성)

  • Yea, Geu-Guwen;Lee, Yong-Jae;Kim, Hong-Yeon;Yoon, Gil-Lim;Han, Sang-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.41-49
    • /
    • 2018
  • The purpose of this study is to fabricate a full scale road embankment using lightweight air foamed soil as a soil material on soft ground and to investigate its material characteristics and behavior in order to promote dredged soil utilization and minimize ground improvement. As a result of the laboratory test of the onsite mixed samples, the total unit weight of the specimens decreased almost linearly until curing 28 days. In particular, the total unit weight after 28 days of curing was reduced to about 81% of the slurry state before curing, which will be useful in the formulation of similar native soil materials in the future. The unconfined compressive strength began to decrease with the 14th day of curing as shown in the previous study. When the cement content is increased, the strength decreases sharply at a small strain change after the occurrence of the maximum compressive strength, and the maximum strength is exhibited in a range of a smaller axial strain than normal range. The settlement at the surface layer of the ground due to the lightweight embankment was about 1 / 2.75 of the soil embankment and was in agreement with the unit weight ratio (1 / 2.7) of the embankment materials. This indicates the cause and effect of the settlement due to the difference in self weight of the embankments. Also, the difference in settlement between soil and lightweight embankment increased with increasing depth. This shows that the difference in the point at which the settlement is terminated is clear. The ground horizontal displacement under the lightweight embankment was about 15~20% smaller than that of the soil embankment and the depth of occurrence was also 4.5~5.0m shallower in the lightweight embankment.

Bloating mechanism of artificial lightweight aggregate with reject ash (잔사회를 이용한 인공경량골재의 발포기구)

  • Lee, Ki-Gang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.158-163
    • /
    • 2012
  • The purpose of this study is to improve recycling rate of the coal reject ash by investigating bloating mechanism for artificial lightweight aggregate of reject ash. In this study, we use reject ash (R/A) and dredged soil (D/S) as raw materials. The artificial lightweight aggregates were formed by plastic forming (${\phi}$ = 10 mm) and sintered by temperature raising method at different temperatures (between 1200 and $1275^{\circ}C$). The physical properties of the aggregates such as bulk specific gravity, adsorption and microstructure of surface and cross-section are investigated with the sintering temperature and rate of R/A-D/S contents. As the result of the bulk specific gravity graphs, we can found out the inflection point at content of R/A 80 wt.%. From the microstructure images, we considered the artificial lightweight aggregates content of R/A over 80 wt.% are distributed numerous uniform micro-pores by vitrification without Black Core and the artificial lightweight aggregates of R/A below 80wt.% are distributed macro-pores with Black Core.

Engineering Characteristics of the Light Weight Soil Used Recycled Stylofoam Beads and Disposal Soils (폐스티로폴 입자와 현장 발생토를 활용한 경량혼합토의 공학적 특성)

  • Shin, Bang-Woong;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • This paper presents the engineering property of light weight soil made of soil mixed with recycled stylofoam and stabilizer. Recycled stylofoam beads is able to use by lightweight fill materials because it is light, adiabatic, and effective for vibration interception. Especially, recycled stylofoam beads is easy to supply because stylofoam have been recycle item in 1996. In this study, physical and geotechnical properties of the light weight mixed soil(weathered granite soil mixed with Stylofoam Beads) were analyzed by laboratory experiments to examine its suitability for backfill materials. Laboratory tests were performed to evaluated strength, bearing capacity, weight, permeability, microphotograph analysis with variation of mixing ratio. Based on the results, it is concluded that the use of recycled stylofoam beads is acceptable lightweight fill.

  • PDF

Thermal Property of the Roof Green Unit System Using Artificial Lightweight Soil Recycled with Bottom Ash (바텀애시 재활용 인공토양 적용 옥상녹화 유니트 시스템의 열특성)

  • Yoo, Jong-Su;Lee, Jong-Chan;Oh, Chang-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • In this study, the surface temperature of the roof green system using ALSRBA(Artificial Lightweight Soil Recycled with Bottom Ash) was measured in each season and the thermal property of the ALSRBA was investigated. As a result, it was certified that ALSBRA has superior thermal property than the usual artificial soil. In addition, The daily temperature range in each season was measured to investigate the thermal isolation property of EUS(Existing Unit System) and DUS(Developed Unit System). The result showed that the thermal isolation effect of EUS was lower than that of SPSS(Site-Place-Soil System), but thermal isolation effect of DUS was similar to that of SPSS because DUS has continuous ALSBRA layer by removing unit barrier.

Behaviors of Lightweight Foamed Soils Considering Underwater Curing and Water Pressure Conditions (수중양생 및 수압조건을 고려한 경량기포혼합토의 거동)

  • Yoon Gil-Lim;You Seung-Kyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2005
  • Lightweight Foamed Soil (LWFS) could be the substitute of normal soils used in backfill to earth structures and embankment materials far soft ground improvement in port and harbor project because of its effectiveness in settlement reduction and earth pressure decrease due to its lightness. A series of triaxial and unconfined compression tests were performed to investigate behaviors of LWFS composed of dredged soils, cement and air foam, and cured at underwater conditions. The density of LWFS will increase if LWFS is cured at underwater conditions because high water pressure makes air foam disappear or demolish during the curing compared with LWFS cured at normal air conditions. This paper is to find the mechanical behaviors of LWFS cured at seawater depth of 5.0 m and 10.0 m, respectively, which simulates underwater curing conditions by underwater pressure simulator chamber developed during this study. In addition, new normalized factor formula, which takes account of mixing design conditions determining compressive strength of LWFS, was proposed to consider mixing design factor fur LWFS.

Manufacturing artificial lightweight aggregates using coal bottom ash and its application to the lightweight-concretes (석탄 바닥재를 이용한 인공경량골재의 제조 및 경량 콘크리트에 적용)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.211-216
    • /
    • 2008
  • The artificial lightweight aggregate (ALA) was manufactured in a rotary kiln at $1125^{\circ}C$ using green body formed by pelletizing the batch powder composing of coal bottom ash (CBA) produced from power plant, clay and dredged soil (DS). The TCLP (Toxicity characteristic leaching procedure) results showed that the dissolution concentration of heavy metal ions of ALA fabricated in this study was below the limitation defined by the enforcement regulations of wastes management law in Korea. The ALA containing 60$\sim$70 wt% CBA had a bulk density of 1.45$\sim$1.49 and a water absorption of 17.2$\sim$18.5 %. The impact values for oven-dry state and saturated-surface dry state of ALA were 27.4$\pm$1.3 and 23.4$\pm$2.6 % respectively. The 28-days compressive strength of concrete made with various ALA was $22.7\sim27.8 N/mm^2$. The slump of concrete with ALA containing CBA 60 and 70 wt% were 7.9 and 14.3 cm respectively. The unit weight of concrete made with any ALA fabricated in this study was satisfied with the standard specifications of lightweight concrete for the civil engineering and construction presented by Korea as below $1.84 ton/m^3$.

Behavior Characteristics of Underground Flexible Pipe Backfilled with Lightweight Foamed Soil (경량기포혼합토로 뒷채움된 연성매설관의 거동특성)

  • Lee, Yong-Jae;Yea, Geu-Guwen;Park, Sang-Won;Kim, Hong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2015
  • Lightweight Foamed Soil (LWFS) is a useful material for underground pipe backfill because of reusability of excavated soil and no compaction effect. In this research, a pilot test is carried out and monitoring results are analyzed to investigate behaviors of a flexible pipe, when LWFS is applied as a backfill material. Simultaneously, they are compared with another test case which is backfilled with Saemangeum dredged soil. As a result, the vertical earth pressure of the case backfilled with LWFS slurry presents that decreases as much as 25.6% in comparison with dredged soil and it is only within 10% after solidification. In case backfilled with dredged soil, the horizontal earth pressure is more than 3.6 times of the case used by LWFS and the vertical and horizontal deformation is more than 3.2 and 2.6 times of the case, respectively. It presents excellent effects on earth pressure and deformation reduction of LWFS. The stresses measured at the upper side of the pipe generally present compressive aspects in case backfilled with dredged soil. However, they present tensile aspects in case of LWFS. It is because of negative moment occurred at the center of the pipe due to the buoyancy from LWFS slurry. Conclusively, LWFS using Saemangeum dredged soil is very excellent material to use near the area in comparison with the dredged soil. However, the countermeasure to prevent the buoyancy is required.

A Study on Application as fill materials of Bottom Ash and Tire Shred by Field Test Embankment (현장시험성토를 통한 석탄회 및 폐타이어의 성토재료 활용성 검토)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Tae-Yoon;Shin, Min-Ho;Hwang, Seon-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1032-1039
    • /
    • 2010
  • Based on the proven feasibility of bottom ash and tire shred-soil mixtures as lightweight fill materials, tire shred-bottom ash mixtures were suggested as a new lightweight fill material to replace the conventional construction material with bottom ash. Therefore, we carried out the laboratory test, field compaction test and performance test of large scale embankment in order to evaluate their suitability for the use of lightweight fill materials in the before studies. We could verified that the ash, tire-shred and the mixture are able to be the useful materials as light fill materials. In this study, we built real scale embankment with RBA(Reclamated Bottom Ash), TRBA(Tire shred-Reclamated Bottom Ash mixture), WS(Weathered Soil), BA(Bottom Ash screened by 5mm sieve) for monitoring the behavior such as settlement, lateral displacement and water content change. Furthermore, we are examining the ground water quality in the surrounding area of the test embankment.

  • PDF

Characteristics of sound absorption materials by using ecological aggregates (에코골재를 사용한 흡음재의 특성)

  • Kim, Kang-Duk;Ryu, Yu-Gwang;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.264-270
    • /
    • 2008
  • Ecological lightweight aggregates were made by using the wastes come from various industrial fields. Wastes were crushed and pulverized by mills and a certain portions of wastes were mixed and formed by pelletizer like small beads. The formed lightweight aggregates were finally sintered with $1125^{\circ}C$/15 min conditions by using rotary kiln. Lightweight concrete sound absorbers were made of ecological lightweight aggregates K73 (Coal bottom ash 70 wt%: Dredged soil 30 wt%) and K631 (Clay 60 wt%: Stone sludge 30 wt%: Spent bleaching clay 10 wt%). For the reference, lightweight concrete sound absorbers made of DL (German made 'L' company LWA) were also made under the same conditions. Sound absorption characteristics were observed and measured according to the kinds of aggregates, water/cement ratio (W/C=20, 25, and 30%), and designed pore rates (V=20, 25, and 30%). The pore rates of the lightweight concrete sound absorber were turned out to be 5 to 10% higher than designed ones. Absorption coefficient of the lightweight concrete sound absorber by using K631 aggregates with W/C=20% and V=25% conditions was 0.88 at 1000 and 3150 Hz from the measurement by the impedance tube.

Load Transfer Characteristics of Pile Foundation for Lightweight Pavement in Sand Soil using Laboratory Chamber Test (모형챔버시험을 이용한 사질토 지반의 경량포장체용 기초의 하중전달 특성)

  • Shin, Kwang-Ho;Hwang, Cheol-Bi;Jeon, Sang-Ryeol;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4588-4594
    • /
    • 2014
  • In this study, small scaled (1/30) laboratory chamber tests of the pile foundation for a lightweight concrete pavement system were carried out to evaluate the safety of a pile foundation on sandy soil. The testing ground was simulated in the field and a standard pile-loading test was conducted. The test piles were divided into 3 types, Cases A, B and C, which is the location from the center of the slab by applying a vertical load. The interval between the piles was set to 8 cm. As a result of the pile foundation model test, the pavement settled when the vertical load was increased to 12kg from 1.5kg in sandy soil ground, particularly the maximum settlement of 0.04mm. Judging from the model chamber test, Case A showed compressive deformation, whereas Case B represented the compression and tensile forces with increasing vertical load. Case C showed an increase in tensile strain.