• Title/Summary/Keyword: lightweight soil

Search Result 101, Processing Time 0.032 seconds

Shearing Properties of Waste Tire Powder-Added Lightweight Soil by Direct Shear Test (직접전단시험에 의한 폐타이어 혼합경량토의 전단특성 연구)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.20-29
    • /
    • 2009
  • This study investigated the shear strength characteristics of waste tire powder-added lightweight soil (WTLS), which were developed to recycle dredged soil, bottom ash, and waste tires. The WTLS used in this experiment consisted of dredged soil, bottom ash, waste tire powder, and cement. Test specimens were prepared with various contents of waste tire powder ranging from 0% to 100% at 25% intervals and bottom ash contents of 0% or 100% by the weight of the dry dredged soil. In this study several series of direct shear tests were carried out, which indicated that the shear properties of WTLS were strongly influenced by the mixing conditions, such as the waste tire powder content and bottom ash content. The unit weight, as well as the shear strength of the WTLS, decreased with an increase in waste tire powder content. The shear strength of WTLS with bottom ash was 1.34 times greater than that of WTLS without bottom ash. An average increase in cohesion of 30 kPa was obtained in WTLS with the inclusion of bottom ash due to the bond strength induced from the pozzolanic reaction of the bottom ash. In this test, the maximum value of the internal friction angle was obtained with a 25% content of waste tire powder.

Experimental Study of Waste Tire Powder-Added Lightweight Soil as Flowable Backfill (유동성 뒷채움재인 폐타이어 혼합경량토에 대한 실험적 연구)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.112-118
    • /
    • 2008
  • The purpose of this study was to determine the engineering and environmental properties of the waste tire powder-added lightweight soil (TLS) used as flowable backfill. The TLS used in this experiment consisted of dredged soil, bottom ash, waste tire powder and cement. Test specimens were prepared with various contents of waste tire powder ranging from 0% to 100% at 25% intervals and water contents ranging from 140% to 200% by the weight of the dry dredged soil. Several series of unconfined compression tests, flow tests, and leaching tests were carried out. Experimental results for the TLS indicated that the unconfined compressive strength, secant modulus (), and unit weight of the TLS decreased with an increase in waste tire powder content. However, as the waste tire powder content increased, the stress-strain relationship of the TLS showed more ductile behavior rather than brittle behavior. The flow value increased with an increase in water content, but decreased with an increase in waste tire powder content. The result of the leaching test showed that the leaching amounts of heavy metals were lower than the permitted limits suggested by the Ministry of Environment.

Economic Analysis of Box Mechanical Behavior Materials Using LCC Analysis (LCC를 고려한 BOX구조물 뒷채움 재료의 경제성 분석)

  • Park, Young-Min;Kim, Soo-Yong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.6
    • /
    • pp.40-47
    • /
    • 2009
  • The lightweight bubble mixture soil is used for soft ground rear-filling material by applying reduced weight on structure. However, comparing with the general soil, it is not applied in domestic because of initial phase cost of construction. General soil, which has lower initial phase cost is usually used for rear-filling, but the use of overlay method of general soil is reduced as the number of layers increases. Especially box structure placed in soft ground or the overlay method when gap near pier rear-filling can be replaced with temporary alternative method, however, it can't be a solution to gap by generation of extra weight of thickness of overlaying. Therefore, execute LCC analysis of two alternative-the general and the lightweight bubble mixture soils, which are rear-filling material of box structure- and present economical analysis in order to make resonable decision from the economics. As a result, although the lightweight bubble mixture soil takes higher initial phase cost than the general soil, it has been analyzed to procure economical efficiency by having less cost of maintenance.

A study on the characteristics of eological lightweight aggregates containing reject ash from the power plant (화력발전소 잔사회 입도에 따른 에코인공골재의 특성에 관한 연구)

  • Kim, Yoo-Taek;Ryu, Yu-Gwang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.4
    • /
    • pp.185-191
    • /
    • 2010
  • To effectively utilize resources of reject ash and dredged soil, globular shape-formed artificial lightweight aggregate were manufactured in 8~10 mm size. Starting materials were changed various grading and composition, sintered at $1050{\sim}1250^{\circ}C$. The specific gravity, water absorptance of artificial lightweight aggregates were measured on the basis of the KS. In this study could make a prediction about application of bloating mechanism by ferrous materials and alkali/alkali-earth oxide at high temperature.

Experimental Study on behavior of the Lightweight Air-foamed Soil Considering Freezing-thawing and Soaking Conditions (동결융해 및 수침조건을 고려한 경량기포혼합토의 거동 실험 연구)

  • Kang, Daekyu;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.37-46
    • /
    • 2016
  • In order to determine the variability of environmental characteristics of lightweight air-foamed soil using marine clay according to freezing-thawing and soaking conditions, unconfined compressive strength of the lightweight air-foamed soil samples made by changing the amount of cement under curing conditions of outdoor low temperature, underground or indoor wetting were observed. Compressive strength was not increased under freezing-thawing (temperature range of $-9.1^{\circ}C{\sim}17.2^{\circ}C$) regardless of the amount of cement but the more cement using, it was increased rapidly by underground curing conditions within 30 cm beneath ground level. Therefore, it is necessary to install insulation layer cutting off exterior cold air after construction of lightweight air-foamed soil in condition of freezing-thawing. Bulk density was increased too small under the long-time soaking condition, it tended to decrease rapidly when samples were dried up and had below 6% of water contents. But variability of compressive strength and bulk density was very small for preventing drying and keeping its wet state. The lightweight air-foamed soil that installed beneath ground water level or covered by soil can be evaluated as a long-term reliable construction material.

Compressive Behaviors of Reinforced Lightweight Soil Using Waste Fishing Net (폐어망을 이용한 보강 경량토의 압축거동 특성)

  • Kim, Yun-Tae;Kim, Hong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.25-35
    • /
    • 2006
  • This paper investigates the mechanical characteristics of reinforced lightweight soil (RLS) using waste fishing net. RLS used in this experiment consists of dredged soil taken from construction site of Busan New Port, cement, air foam and waste fishing net. Several series of laboratory tests were performed to compare behavior characteristics between RLS and unreinforced lightweight soil, in which the reinforced effect by waste fishing net on RLS was evaluated. The experimental results of RLS indicated that the stress-strain relationship and the unconfined compressive strength are strongly influenced by the content of waste fishing net. Compressive strength of RLS Increased with the increase in curing time and generally increased by adding waste fishing net, but the amount of increase in compressive strength was not proportional to the content of waste fishing net. In this test, the maximum increase in compressive strength was obtained at 0.25% content of waste fishing net. On the other hand, water content of RLS rapidly decreased up to 7 days of curing time and converged to constant value.

Performance Test of Large Scale Embankment made with Bottom Ash and Tire Shred (저회-폐타이어 재생혼합토의 실대형 성토구조물 성능 시험)

  • Lee, Sung-Jin;Shin, Min-Ho;Hwang, Seon-Keun;Koh, Tae-Hoon;Lee, Yong-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1756-1767
    • /
    • 2008
  • Recently, a global trend has been established to facilitate the use of waste materials in geotechnical engineering applications. In Korea, where there is the need to save natural resources as these may become scare in the near future and to prevent excessive ground excavation for natural aggregates. The annual production of scrap tire and bottom ash has sharply increased in recent years. Therefore, it will be good waste resource recycling, if we can utilize the above wastes as fill materials in soft ground. In this study, based on the proven feasibility of bottom ash and tire shred-soil mixtures as lightweight fill materials, tire shred-bottom ash mixtures were suggested as a new lightweight fill material to replace the conventional construction material(soil) with bottom ash. Therefore, the main objective of this research is to investigate the feasibility of tire shred-bottom ash mixtures in order to estimate their suitability for the use of lightweight fill materials. So we carried out the performance tests of 2 large scale embankment which were made with tire shred-bottom ash mixture and the conventional fill material(weathered soil) respectively.

  • PDF

Effect of Mixing Time by Mix Truck on the Physical Properties of Lightweight Air-mixed Soil (믹스트럭 내 교반시간이 경량기포혼합토의 물성에 미치는 영향)

  • Kim, Taehyo;Kim, Nayoung;Im, Jongchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.15-25
    • /
    • 2015
  • As the physical and mechanical properties of lightweight air-mixed soil change in the procedure of transportation of mix truck, it is necessary to assure whether the properties during construction satisfy those in design. In this study, variations of properties of mixed soil after transportation by mix truck are proved by field test. Lightweight air-mixed soil used field test the unit weight of $9.0{\pm}1.0kN/m^3$, the flow value of $190{\pm}20mm$ was produced. To analyze variations of properties of mixed soil the unit weight and flow value of the sample before and after transport was measured unconfined compressive strength tests were performed. Mixing time was 19~175 minutes diversified. As the test results, it is known that the density, the flow value and the unconfined compressive strength of lightweight air-mixed soil change by transportation, but these values satisfy the specifications of material of air-mixed soil. After transportation the average value of the unit weight and flow value change in the flow of the $(+)0.10kN/m^3$, 4.8 mm respectively, the average change in the unit weight and the flow value due to the mixing time was constant. And unconfined compressive strength of 28-day specimen increases from 20 to $150kN/m^2$. But, these values do not have some clear relationship with the transportation time within 175 minutes which is longest test time. Consequently, Within 175 minutes the changes of properties by transportation are too small to show some problems in the construction field.

Evaluation of Properties of Artificial Soil Aggregate Based on Ground Granulated Blast-Furnace Slag According to Unit Binder Content (단위결합재량에 따른 고로슬래그 기반 육성용 인공토양골재의 특성평가)

  • Mun, Ju-Hyun;Sim, Jae-Il;Yun, In-Gu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.85-92
    • /
    • 2016
  • The eight mixes and artificial soil aggregates were prepared for evaluating the practical application of lightweight foamed concrete as soil aggregates. The main parameter was unit binder content ranged between from 100 to $800kg/m^3$. In lightweight foamed concrete, flow, slurry and dried density, and compressive strength at different ages were measured. In Artificial soil aggregates crushed from lightweight foamed concrete, particle size distribution, pH, coefficient of permeability, cation exchange capacity(CEC), and ratio of carbon to nitrogen(ratio of C/N), were measured. The test results showed that flow, slurry and dried density, and compressive strength at different ages of lightweight foamed concrete increased with the increasing of unit binder content. Compressive strength at age of 28, of lightweight foamed concrete with unit binder of more than $500kg/m^3$, was more than 4 MPa. The ammonium phosphate immersion time of more than age of 3, was effective to decrease pH of artificial soil aggregates. In addition, artificial soil aggregates was evaluated as high class in terms of cation exchange capacity(CEC), while satisfied with value of ratio of carbon to nitrogen(ratio of C/N) recommended by landscape specification.

Evaluation of Flow and Engineering Properties of High-Volume Supplementary Cementitious Materials Lightweight Foam-Soil Concrete (하이볼륨 혼화재 경량기포혼합토 콘크리트의 유동성 및 공학적 특성 평가)

  • Shim, Sang-Woo;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yun, In-Gu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • The present study prepared lightweight foam-soil concrete mixtures classified into three groups. Considering the sustainablility, workability, and compressive strength development of such concrete, high-volume supplementary cementitious materials (SCMs) were used as follows: 20% cement, 15% fly ash, and 65% ground granulated blast-furnace slag. As main test parameters selected for achieving the compressive strength of 1MPa and dry density of $1,000kg/m^3$, the unit solid content (dredged soil and binder) ranged between 900 and $1,807kg/m^3$, and soil-to-binder ratio varied between 3.0 and 7.0. Test results revealed that the flow of the lightweight foam-soil concrete tended to decrease with the increase of unit soil content. The compressive strength of such concrete increased with the increase with the unit binder content, whereas it decreased as soil-to-binder ratio increased, indicating that the compressive strength can be formulated as a function of its dry density and soil-to-binder ratio.