• Title/Summary/Keyword: lightweight block

Search Result 155, Processing Time 0.022 seconds

Application of EPS Considering Long-term Durability (장기내구성을 고려한 EPS의 현장 적용성)

  • Chun, Byungsik;Jung, Changhee;Ahn, Jinhyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.53-60
    • /
    • 2007
  • L/EPS, manufactured in the shape of block and used for civil engineering, is a lightweight material with an excellent resistance to compression, and provides a superb self-sufficient stability. EPS is a suitable material capable of resolving the problem of settlement and lateral flow if it is applied as the soil on soft ground. The Korean Standards (KS) has not yet proposed any testing method for use of EPS as an engineering banking material. Only its testing and quality ordinance as a heat insulation material has been standardized. The design criteria for EPS has been established and applied through the trial construction of KHC (Korea Highway Corporation) and quality test of manufacturer, but most studies on them have been confined to factory products. This study is focused on comparing and analyzing long-term durability by conducting cyclic load test, freezing and thawing test, absorption rate test and others. EPS used in the test was chosen from construction sites and factory products, focusing on the long-term durability of EPS depending on the passage of time. Unconfined compression test results indicated that the strength of collected samples was lower than factory products. While the triaxial compression test results indicated that the shear strength increased in proportion to the increase of confining pressure, and factory products had declining shear strength as the confining pressure rose.

  • PDF

HFN-Based Right Management for IoT Health Data Sharing (IoT 헬스 데이터 공유를 위한 HFN 기반 권한 관리)

  • Kim, Mi-sun;Park, Yongsuk;Seo, Jae-Hyun
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.88-98
    • /
    • 2021
  • As blockchain technology has emerged as a security issue for IoT, technology which integrates block chain into IoT is being studied. In this paper is a research concerning token-based IoT service access control technology for data sharing, which propose a possessor focused data sharing technic by using the permissioned blockchain. To share IoT health data, a Hyperledger Fabric Network consisting of three organizations was designed to provide a way to share data by applying different access control policies centered on device owners for different services. In the proposed system, the device owner issues access control tokens with different security levels applied to the participants in the organization, and the token issue information is shared through the distributed ledger of the HFN. In IoT, it is possible to lightweight the access control processing of IoT devices by granting tokens to service requesters who request access to data. Furthmore, by sharing token issuance information among network participants using HFN, the integrity of the token is guaranteed and all network participants can trust the token. The device owners can trust that their data is being used within their authorized rights, and control the collection and use of data.

Development of The Safe Driving Reward System for Truck Digital Tachograph using Hyperledger Fabric (하이퍼레저 패브릭을 이용한 화물차 디지털 운행기록 단말기의 안전운행 보상시스템 구현)

  • Kim, Yong-bae;Back, Juyong;Kim, Jongweon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.47-56
    • /
    • 2022
  • The safe driving reward system aims to reduce the loss of life and property by reducing the occurrence of accidents by motivating safe driving and encouraging active participation by providing direct reward to vehicle drivers who have performed safe driving. In the case of the existing digital tachograph, the goal is to limit dangerous driving by recording the driving status of the vehicle whereas the safe driving reward system is a support measure to increase the effect of accident prevention and induces safe driving with financial reward when safe driving is performed. In other words, in an area where accidents due to speeding are high, direct reward is provided to motivate safe driving to prevent traffic accidents when safe driving instructions such as speed compliance, maintaining distance between vehicles, and driving in designated lanes are performed. Since these safe operation data and reward histories must be managed transparently and safely, the reward evidences and histories were constructed using the closed blockchain Hyperledger Fabric. However, while transparency and safety are guaranteed in the blockchain system, low data processing speed is a problem. In this study, the sequential block generation speed was as low as 10 TPS(transaction per second), and as a result of applying the acceleration function a high-performance network of 1,000 TPS or more was implemented.

Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles (전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구)

  • Cho, Seunghyun;Yoon, Bumyong;Lee, Sanghyun;Hong, Kyoung Min;Lee, Sang Hyun;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • Due to enormous market growing of electric vehicles without combustion engine, reducing unwanted BSR (buzz, squeak, and rattle) noise is highly demanded for vehicle quality and performance. Particularly, innerbelt weatherstrips which not only block wind noise, rain, and dust from outside, but also reduce noise and vibration of door glass and vehicle are required to exhibit high damping properties for improved BSR performance of the vehicle. Thermoplastic elastomers (TPEs), which can be recycled and have lighter weight than thermoset elastomers, are receiving much attention for weatherstrip material, but TPEs exhibit low material damping and compression set causing frictional noise and vibration between the door glass and the weatherstrip. In this study, high damping EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV) were investigated by varying EPDM/PP ratio and ENB (ethylidene norbornene) fraction in EPDM. Viscoelastic properties of TPV materials were characterized by assuming that the material damping is directly related to the viscoelasticity. The optimum material damping factor (tanδ peak 0.611) was achieved with low PP ratio (14 wt%) and high ENB fraction (8.9 wt%), which was increased by 140% compared to the reference (tanδ 0.254). The improved damping is believed due to high fraction of flexible EPDM chains and higher interfacial slippage area of EPDM particles generated by increasing ENB fraction in EPDM. The stick-slip test was conducted to characterize frictional noise and vibration of the TPV weatherstrip. With improved TPV material damping, the acceleration peak of frictional vibration decreased by about 57.9%. This finding can not only improve BSR performance of electric vehicles by designing material damping of weatherstrips but also contribute to various structural applications such as urban air mobility or aircrafts, which require lightweight and high damping properties.

Research on Radiation Shielding Film for Replacement of Lead(Pb) through Roll-to-Roll Sputtering Deposition (롤투롤 스퍼터링 증착을 통한 납(Pb) 대체용 방사선 차폐필름 개발)

  • Sung-Hun Kim;Jung-Sup Byun;Young-Bin Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.441-447
    • /
    • 2023
  • Lead(Pb), which is currently mainly used for shielding purposes in the medical radiation, has excellent radiation shielding functions, but is continuously exposed to radiation directly or indirectly due to the harmfulness of lead itself to the human body and the inconvenience caused by its heavy weight. Research on shielding materials that are human-friendly, lightweight, and convenient to use that can block risks and replace lead is continuously being conducted. In this study, based on the commonly used polyethylene terephthalate (PET) film and the fabric material used in actual radiation protective clothing, a multi-layer thin film was realized through sputtering and vacuum deposition of bismuth, tungsten, and tin, which are metal materials that can shield radiation. Thus, a shielding film was produced and its applicability as a radiation shielding material was evaluated. The radiation shielding film was manufactured by establishing the optimized conditions for each shielding material while controlling the applied voltage, roll driving speed, and gas supply amount to manufacture the shielding film. The adhesion between the parent material and the shielding metal thin film was confirmed by Cross-cut 100/100, and the stability of the thin film was confirmed through a hot water test for 1 hour to measure the change of the thin film over time. The shielding performance of the finally realized shielding film was measured by the Korea association for radiation application (KARA), and the test conditions (inverse wide beam, tube voltage 50 kV, half layer 1.828 mmAl) were set to obtain an attenuation ratio of 16.4 (initial value 0.300 mGy/s, measured value 0.018 mGy/s) and damping ratio 4.31 (initial value 0.300 mGy/s, measured value 0.069 mGy/s) were obtained. by securing process efficiency for future commercialization, light and shielding films and fabrics were used to lay the foundation for the application of films to radiation protective clothing or construction materials with shielding functions.