• Title/Summary/Keyword: lightweight authentication

Search Result 128, Processing Time 0.024 seconds

A Lightweight Three-Party Privacy-preserving Authentication Key Exchange Protocol Using Smart Card

  • Li, Xiaowei;Zhang, Yuqing;Liu, Xuefeng;Cao, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1313-1327
    • /
    • 2013
  • How to make people keep both the confidentiality of the sensitive data and the privacy of their real identity in communication networks has been a hot topic in recent years. Researchers proposed privacy-preserving authenticated key exchange protocols (PPAKE) to answer this question. However, lots of PPAKE protocols need users to remember long secrets which are inconvenient for them. In this paper we propose a lightweight three-party privacy-preserving authentication key exchange (3PPAKE) protocol using smart card to address the problem. The advantages of the new 3PPAKE protocol are: 1. The only secrets that the users need to remember in the authentication are their short passwords; 2. Both of the users can negotiate a common key and keep their identity privacy, i.e., providing anonymity for both users in the communication; 3. It enjoys better performance in terms of computation cost and security. The security of the scheme is given in the random oracle model. To the best of our knowledge, the new protocol is the first provably secure authentication protocol which provides anonymity for both users in the three-party setting.

A Lightweight Authentication and Key Agreement Protocol in Wireless Sensor Networks (무선센서 네트워크에서 경량화된 인증과 키 동의 프로토콜)

  • Yoon, Sin-Sook;Ha, Jae-Cheol
    • Journal of Internet Computing and Services
    • /
    • v.10 no.2
    • /
    • pp.41-51
    • /
    • 2009
  • Recently, there are many researches on security to remove vulnerability which is caused by wireless communication in wireless sensor networks. To guarantee secure communication, we should basically provide key management for each node, mutual authentication and key agreement protocol between two nodes. Although many protocols are presented to supply these security services, some of them require plentiful storage memory, powerful computation and communication capacity. In this paper, we propose a lightweight and efficient authentication and key agreement protocol between two sensor nodes, which is an enhanced version of Juang's scheme. In Juang's protocol, sensor node's information used to share a secret key should be transmitted to registration center via a base station. On the contrary, since node's information in our protocol is transmitted up to only base station, the proposed scheme can decrease computation and communication cost for establishing the shared key between two nodes.

  • PDF

Security Enhancement of Lightweight User Authentication Scheme Using Smartcard (스마트카드를 이용한 안전한 경량급 사용자 인증 스킴의 설계)

  • Lee, Youngsook
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.209-215
    • /
    • 2020
  • The environment of the Internet provides an efficient communication of the things which are connected. While internet and online service provide us many valuable benefits, online services offered and accessed remotely through internet also exposes us to many different types of security threats. Most security threats were just related to information leakage and the loss of authentication on client-server environment. In 2016, Ahmed et al. proposed an efficient lightweight remote user authentication protocol. However, Kang et al. show that it's scheme still unstable and inefficient. It cannot resist offline identity guessing attack and cannot provide session key confirmation property. Moreover, there is some risk of biometric information's recognition error. In this paper, we propose an improved scheme to overcome these security weaknesses by storing secret data in device. In addition, our proposed scheme should provide not only security, but also efficiency since we only use hash function and XOR operation.

A IoT Security Service based on Authentication and Lightweight Cryptography Algorithm (인증 및 경량화 암호알고리즘 기반 IoT 보안 서비스)

  • Kim, Sun-Jib
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The IoT market continues to expand and grow, but the security threat to IoT devices is also increasing. However, it is difficult to apply the security technology applied to the existing system to IoT devices that have a problem of resource limitation. Therefore, in this paper, we present a service that can improve the security of IoT devices by presenting authentication and lightweight cryptographic algorithms that can reduce the overhead of applying security features, taking into account the nature of resource limitations of IoT devices. We want to apply these service to home network IoT equipment to provide security. The authentication and lightweight cryptographic algorithm application protocols presented in this paper have secured the safety of the service through the use of LEA encryption algorithms and secret key generation by users, IoT devices and server in the IoT environment. Although there is no difference in speed from randomly generating secret keys in experiments, we verify that the problem of resource limitation of IoT devices can be solved by additionally not applying logic for secret key sharing to IoT devices.

A Lightweight Key Management for Wireless LANs with the Fast Re-authentication (무선 랜에서 빠른 재 인증을 이용한 간소화된 키 관리 기법)

  • Lee Jae-Hyoung;Kim Tae-Hyong;Han Kyu-Phil;Kim Young-Hak
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.327-338
    • /
    • 2005
  • Since the IEEE 802.11 wireless LANs were known to have several critical weaknesses in the aspect of security, a lot of works have been done to reduce such weaknesses of the wireless LAN security, Among them IEEE 802.lli may be the ultimate long-term solution that requires new security platform with new wireless LAM products. However, it might not be the best solution for small organizations due to its high cost where the cost is a critical issue. This paper proposes FR-WEP, a light-weight key management for wireless LANs that can be used with small changes of the existing Products. FR-WEP is an extension to a lightweight key management, WEP'(9), which was proposed lately. It makes up for the weak points of WEP' by providing lightweight mutual authentication with both host keys and user keys, and seamless key-refresh for authenticated users with fast re-authentication. It would be a good alternative to the heavy standards for wireless LAN security, especially to small organizations hoping for better security.

A Design of Lightweight-EAP Method for IoT Environment (IoT 환경에 적합한 경량 EAP 메소드 설계)

  • Yoo, Joseph;Kim, Keecheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.305-308
    • /
    • 2017
  • EAP is an extensible authentication protocol that supports EAP methods with various authentication mechanisms. Since EAP itself is designed as a protocol for authentication only, it is not used for general data transmission after authentication between peer and authenticator. EAP itself is a protocol that can operate lightly in terms of the simple communication structure of EAP, but the procedure may become more complicated depending on which EAP method is selected and used. In particular, the IoT market has recently become established, and frequent authentication environments arise due to data loss, modulation, and repeated connections in a wireless environment. In this case, some highly secure EAP methods are not suitable for some IoT environments that require lighter and faster communications than complex procedures. In this paper, we design a lightweight authentication EAP method that is suitable for IoT environment that does not touch the existing EAP framework and requires frequent authentication and fast communication.

  • PDF

Cortex M3 Based Lightweight Security Protocol for Authentication and Encrypt Communication between Smart Meters and Data Concentrate Unit (스마트미터와 데이터 집중 장치간 인증 및 암호화 통신을 위한 Cortex M3 기반 경량 보안 프로토콜)

  • Shin, Dong-Myung;Ko, Sang-Jun
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.2
    • /
    • pp.111-119
    • /
    • 2019
  • The existing smart grid device authentication system is concentrated on DCU, meter reading FEP and MDMS, and the authentication system for smart meters is not established. Although some cryptographic chips have been developed at present, it is difficult to complete the PKI authentication scheme because it is at the low level of simple encryption. Unlike existing power grids, smart grids are based on open two-way communication, increasing the risk of accidents as information security vulnerabilities increase. However, PKI is difficult to apply to smart meters, and there is a possibility of accidents such as system shutdown by sending manipulated packets and sending false information to the operating system. Issuing an existing PKI certificate to smart meters with high hardware constraints makes authentication and certificate renewal difficult, so an ultra-lightweight password authentication protocol that can operate even on the poor performance of smart meters (such as non-IP networks, processors, memory, and storage space) was designed and implemented. As a result of the experiment, lightweight cryptographic authentication protocol was able to be executed quickly in the Cortex-M3 environment, and it is expected that it will help to prepare a more secure authentication system in the smart grid industry.

Policy-based Authentication Framework in Ubiquitous Computing Environment

  • Lee Ji-In;cho young bok;lee Sang Ho
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.95-98
    • /
    • 2004
  • In this paper, we propose policy-based authentication framework which consists of policy server, CA and a policy language designed for ubiquitous environments. Using policies allows the security functionality to be modified without changing the implementation of the entities involved. Policy-based authentication framework needs to be very expressive but lightweight and easily extensible. We propose the feasibility of our policy language and policy-based authentication framework in ubiquitous-environment through a prototype and solve the problem that traditional framework have a simple registration and authentication to provide dynamic service.

  • PDF

A Lightweight Authentication Protocol for Ambient Assisted Living Systems (전천 후 생활 지원 시스템을 위한 경량 인증 프로토콜)

  • Yi, Myung-Kyu;Whangbo, Taeg-Keun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.9-16
    • /
    • 2017
  • Recent advances in healthcare technologies along with improved medical care have led to a steady increase in life expectancy over the past few decades. As a result, the world population is aging rapidly. Various researches have been carried out to provide information and communication technologies based solutions that enhance the well-being of elderly people and provide them with a well margin of independency in their daily life. Ambient assisted living can be defined as the use of information and communication technologies in a person's daily living and working environment to enable them to stay active longer, remain socially connected and live independently into old age. Since the information transmitted in ambient assisted living systems is very sensitive, the security and privacy of such data are becoming important issues that must be dealt with. In this paper, we propose a novel lightweight authentication protocol for the ambient assisted living systems. The proposed authentication protocol not only supports several important security requirements needed by the ambient assisted living systems, but can also withstand various types of attacks. In addition, the security analysis results show that the proposed authentication protocol is more efficient and secure than the existing authentication protocols.

A Secure Authentication and Key Agreement Scheme for Smart Grid Environments without Tamper-Resistant Devices (스마트 그리드 환경에서 변조 방지 디바이스를 사용하지 않는 안전한 사용자 인증 및 키 합의 방식)

  • Park, Ki-Sung;Yoon, Dae-Geun;Noh, SungKee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.3
    • /
    • pp.313-323
    • /
    • 2020
  • With the development of smart grid technologies, a user can use the secure and reliable power services in smart gird environments. However, the users are not secure against various potential attacks because the smart gird services are provided through the public channel. Therefore, a secure and lightweight authentication and key agreement scheme has become a very important security issue in smart grid in order to guarantee user's privacy. In 2019, Zhang et al. proposed a lightweight authentication scheme for smart gird communications. In this paper, we demonstrate that Zhang et al.'s scheme is vulnerable to impersonation and session key disclosure attacks, and then we propose a secure authentication and key agreement scheme for smart grid environments without tamper-resistant devices. Moreover, we perform the informal security and the BAN logic analysis to prove that our scheme is secure various attacks and provides secure mutual authentication, respectively. We also perform the performance analysis compared with related schemes. Therefore, the proposed scheme is efficiently applicable to practical smart gird environments.