• Title/Summary/Keyword: lightweight aggregate concrete

Search Result 301, Processing Time 0.048 seconds

Mechanical Properties of Reinforced High-Strength Concrete Using Fly-ash Artificial lightweight Aggregate (석탄회 인공경량골재를 사용한 고강도 콘크리트의 역학적 특성)

  • 박완신;한병찬;성수용;윤현도;정수용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.151-156
    • /
    • 2001
  • Concrete has excellent characteristics as building material and functions relatively well; but it has many problems concerning too heavy weight of the structures. Accordingly, it is the assignment for study in the part of building materials to lighten and high strengthen the weight of concrete structures in order to improve those weak Points; and it seems one of the representative solutions to develop the high strength lightweight aggregate concrete. Based on the experimental results presented, the following conclusions are drawn. The concrete with unit weight of 1.96~2.03t/$m^{2}$, compressive strength of 322~431kgf/$cm^{2}$ was gained. So, it appears that the lightweight aggregate concrete will be useful for low unit weight and high strength lightweight aggregate concrete. In the end, to manufacture artificial lightweight aggregate concrete for construction work is necessary to develope artificial aggregate which has improved performances physically.

  • PDF

Relative Dynamic Modulus of Elasticity Comparison of the Eco-friendly Lightweight Concreate According to the Experimental Method (시험방법에 따른 친환경 경량콘크리트의 상대동탄성 계수 비교)

  • Lee, Soo-Hyung;Lee, Han-Baek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.181-182
    • /
    • 2016
  • We developed eco-friendly lightweight concrete in order to apply eco-friendly lightweight concrete into structural wall or slab of shallow depth urban railway system. However, since lightweight aggregate has different structural feature of porous and it has been overvalued at current KS standard when applied, we did compare the characteristics of freezing and thawing of normal weight aggregate concrete by comparative test method(KS, ASTM). According to test method, there was a big difference of dynamic elastic modulus in lightweight concrete rather than in normal weight aggregate concrete. The big absorption factor in lightweight aggregate is main reason for that. For more detail, in KS law in which only 14 days water curing is carried out, the big amount of moisture in lightweight aggregate is frozen and high heaving pressure occurs and finally that lead to destruction of lightweight concrete. Therefore, it is considered that in case of lightweight concrete, resistibility against freezing and thawing has been undervalued in domestic KS law compared to ASTM law, which is overseas standard. So, a variety of examination about testing criteria and rule would be necessary for exact assessment of lightweight concrete.

  • PDF

Local bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.449-466
    • /
    • 2015
  • This paper aims to study the local bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete (LWAC). The experimental variables of the local bond stress-slip tests include concrete strength (20, 40 and 60 MPa), deformed steel bar size (#4, #6 and #8) and coarse aggregate (normal weight aggregate, reservoir sludge lightweight aggregate and waterworks sludge lightweight aggregate). The test results show that the ultimate bond strength increased with the increase of concrete compressive strength. Moreover, the larger the rib height to the diameter ratio ($h/d_b$) of the deformed steel bars is, the greater the ultimate bond stress is. In addition, the suggestion value of the CEB-FIP Model Code to the LWAC specimen's ultimate bond stress is more conservative than that of the normal weight concrete.

Ultimate moment capacity of foamed and lightweight aggregate concrete-filled steel tubes

  • Assi, Issam M.;Qudeimat, Eyad M.;Hunaiti, Yasser M.
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2003
  • An experimental investigation of lightweight aggregate and foamed concrete contribution to the ultimate strength capacity of square and rectangular steel tube sections is presented in this study. Thirty-four simply supported beam specimens, 1000-mm long, filled with lightweight aggregate and foamed concretes were tested in pure flexural bending to calculate the ultimate moment capacity. Normal concrete-filled steel tubular and bare steel sections of identical dimensions were also tested and compared to the filled steel sections. Theoretical values of ultimate moment capacity of the beam specimens were also calculated in this study for comparison purposes. The test results showed that lightweight aggregate and foamed concrete significantly enhance the load carrying capacity of steel tubular sections. Furthermore, it can be concluded from this study that lightweight aggregate and foamed concretes can be used in composite construction to increase the flexural capacity of the steel tubular sections.

The Mechanical Properties of Lightweight Concrete Using the Lightweight Aggregate Made with Recycled-plastic and high carbon fly ash (폐플라스틱과 고탄소 플라이애쉬 경량골재를 이용한 경량 콘크리트의 역학적 특성)

  • Jo, Byung-Wan;Park, Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.640-643
    • /
    • 2004
  • Synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5mm were produced with fly ash contents of 0 percent, 35 percent, and 80 percent by total mass of the aggregate. An expanded day lightweight aggregate and a normal-weight aggregate were used as comparison. Mechanical properties of the concrete determined included density, compressive strength, elastic modulus, and splitting tensile strength. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As fly ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved.

  • PDF

Manufacturing of Lightweight Aggregate using Sewage Sludge by a Pilot Plant(10ton/day) (Pilot Plant(10톤/일)를 이용한 하수슬러지 인공경량골재의 제조)

  • Mun, Kyoung-Ju;Lee, Hwa-Young;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.117-120
    • /
    • 2006
  • The purpose of this study is to efficiently treat the sewage sludge discharged from sewage treatment plants and evaluate the feasibility of the manufacture of lightweight aggregates(LWA) using a large quantity of sewage sludge. Sintered lightweight aggregate from sewage sludge is experimentally manufactured with various mass ratios of clay to sewage sludge by a pilot plant, and is tested for density, water absorption and crushing value. Their physical properties are compared to those of a commercial sintered lightweight aggregate. As a result, an experimentally manufactured lightweight aggregate is similar or superior in physical properties to the commercial lightweight aggregate. The manufactured lightweight aggregate could be used for structural concrete and non-structural concrete.

  • PDF

A Study on The Quality Control of Pre-absorbed Water Light-weight Aggregate Concrete (경량콘크리트 제조를 위한 경량골재 사전흡수수 품질관리방안)

  • Lim, Sang-Jun;Lee, Han-Woo;Lee, Byung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.199-200
    • /
    • 2011
  • Absorption of lightweight aggregate affects the properties of fresh and hardened concrete, so care must be taken. In this study, according to KS F 2533 absorption is measured to aggregate size, submerged time, holding time and practically ways to maintain a constant absorption was to seek. The findings for quality control of the lightweight aggregate concrete mixture is saturation of the surface-dry aggregate humidity 100% after 24 hours immersion in the environment has been stored for more than two days to absorb the state was able to define. Dry density at the surface of the lightweight aggregate and lightweight concrete mix design and placement is possible for it to apply.

  • PDF

Physical Properties of Lightweight Concrete by Grain Size of Lightweight Aggregate (경량골재의 입도 변화에 따른 경량콘크리트의 물리적 특성)

  • Lee, Soo-Hyung;Kwon, Choon-Woo;Kong, Tae-Woong;Lee, Han-Baek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.255-256
    • /
    • 2010
  • I think application properties to lightweight concrete of Chinese lightweight Aggregate will be considered according to the Grain Size, and shows by a reference data for efficient utilization of Chinese lightweight Aggregate to settle the problem that self-weight of concrete is excessive.

  • PDF

Failure of lightweight aggregate concrete-filled steel tubular columns

  • Ghannam, Shehdeh;Jawad, Yahia Abdel;Hunaiti, Yasser
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Tests on steel tubular columns of square, rectangular and circular section filled with normal and lightweight aggregate concrete were conducted to investigate the failure modes of such composite columns. Thirty-six full scale columns filled with lightweight and normal weight aggregate concrete, eighteen specimens for each, were tested under axial loads. Nine hollow steel sections of similar specimens were also tested and results were compared to those of filled sections. The test results were illustrated by a number of load-deflection and axial deformation curves. The results showed that both types of filled columns failed due to overall buckling, while hollow steel columns failed due to bulging at their ends (local buckling). According to the above-mentioned results, and due to low specific gravity and thermal conductivity of the lightweight concrete the further interest should be concentrated in replacing the normal concrete by the lightweight aggregate concrete.

Characteristics of Lightweight Aggregate Concrete according to Freezing and Thawing Resistance Test Methods (동결융해 저항성 시험방법에 따른 경량골재 콘크리트의 특성)

  • Kim, Se-Hwan;Kim, Sang-Heon;Lee, Soo-Hyung;Jeon, Hyun-Kyu;Seo, Chee-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.202-208
    • /
    • 2013
  • The method used to test lightweight aggregate concrete for its resistance to freezing and thawing is different in each country. In Korea, the method of KS F 2456 on normal concrete is adopted for lightweight aggregate concrete, while the testing method of ASTM C 330 lightweight aggregates for structural concrete is used in the majority of overseas countries. In this study, we identified differences between KS F 2456 and ASTM C 330 in terms of the testing method for freezing and thawing resistance, and we studied the influence of this on the freezing and thawing resistance of lightweight aggregate concrete. The results of this study were as follows: Blocked lightweight aggregates had a slight collapse of shape and lost weight by repeated freezing and thawing, but unblocked lightweight aggregates were badly collapsed. And while the freezing and thawing resistance tests of normal concrete showed similar results despite the difference in the KS and ASTM testing method, the results for lightweight aggregate concrete were very different. So the KS test method shows evaluation results that are much lower than the ASTM test method.