• Title/Summary/Keyword: lightweight

Search Result 2,792, Processing Time 0.03 seconds

Wearable antenna for Body area Network

  • Lim, Eng Gee;Wang, Zhao;Lee, Sanghyuk
    • Journal of Convergence Society for SMB
    • /
    • v.3 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • Wireless Body Area Networks (WBAN) have been made possible by the emergence of small and lightweight wireless systems such as Bluetooth, enabled devices and PDAs. Antennas are an essential part of any WBAN system and due to various technical requirements and physical constraints, careful consideration of their design and deployment is needed. This paper is proposing on the design of wearable antenna as parts of clothing to serve communications functions, such as tracking and navigation in health care applications. The substrates of the wearable antennas will be made from textile materials and since it is wearable, it should have a small size, be light weight, low maintenance, and unobtrusive. This proposed paper will also investigate the influence of different parameters for wearable antenna including types of textile/substrate to ensure that the antenna design satisfies WBAN requirements. The characteristics and behavior of the antenna need to adhere to specifications set by wireless standards and system technology requirements. This means that the transmitting and receiving frequency bands of the various units need to be chosen accordingly. Since there are restrictions on the level of power to which the human body can be exposed to, the antenna as well as other RF system components must be designed to meet these restrictions. Antenna gain, which directly affects power transmitted, is a critical parameter in ensuring power levels fall within the safety guidelines and so will be of primary importance in the design. The electromagnetic interaction between WBAN antennas and devices and the human body will also be explored.

  • PDF

Study on the Development and Property of Epoxy Putty with Excellent Low Shrinkage and Cutting Force Using Mercaptan Type and Diamine Type (Mercaptan계와 Diamine계를 이용한 저수축·절삭력이 우수한 Epoxy Putty의 개발 및 물성에 관한 연구)

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of Adhesion and Interface
    • /
    • v.16 no.4
    • /
    • pp.137-145
    • /
    • 2015
  • This study aimed to develop epoxy putty as a multi-purpose connection and restoration material that can be used for material-specific restoration work such as metal, wood, ceramics, earthenware and stone artifacts by replacing synthetic resins currently being used for preservation treatment of cultural assets. Existing synthetic resins have the issue of cutting force resulting from high strength, deflection resulting from long hardening time, contaminating the surface of artifacts through staining on tools or gloves and need for re-treatment resulting from material discoloration. Accordingly, paste type restoration material most widely being used in the field of cultural assets preservation treatment was selected and examined the property to select it as an object of comparison. Based on such process, epoxy putty was developed according to the kind of agent, hardener and filler. For the purpose of solving the issues of existing material and allowing the epoxy putty developed to have similar property, property experiments were conducted by selecting agents and hardeners with different characteristics and conditions. The study findings showed that both kinds are paste type that improved work convenience and deflection issue as a result of their work time of within 5~10 minutes that are about 3~10 times shorter than that of existing material. In regards to wear rate for increasing cutting force, it improved by about 3 times, thereby allowing easy molding. For the purpose of improving the issue of surface contamination that occurs during work process, talc and micro-ballon were added as filler to reduce the issue of stickiness and staining on hand. Furthermore, a multi-purpose restoration material with low shrinkage, low discoloration and high cutting force was developed with excellent coloring, lightweight and cutting force features.

Polyether Ester by Rubber Content and Rubber According to the Type of Dynamic Vulcanized Properties (TPEE) (폴리에스터계 동적가교물의 고무함량 및 고무종류에 따른 물성)

  • Yun, Ju-Ho;Yun, Jung-Hwan;Ha, Seong-Mun;Kim, Il;Sim, Sang-Eun
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.67-75
    • /
    • 2013
  • E-TPE (Engineering Thermoplastic Polyether Ester) was Ester Elastomer with functional groups as recycling and fast processability. In addition, if the car's lightweight enough to highlight eco-friendly materials that help to improve fuel economy has become. Have all the attributes of the rubber and engineering plastics E-TPE the available temperature area is spacious, heat resistance and oil resistance is excellent but getting attention as a new material in the field of auto parts in the field of electrical and electronic domestic depends entirely on imports by the lack of core technology and has been research and development is urgently needed. In this study, the hard segments, polyester (TPEE) as the base soft elastomers of the segments Ethylen-prophylene-Copolymer and CSM (Choloro sulphonated polyethylene Rubber), VAMAC (Ethylene Acrylic Rubber), NBR (Acrylonitrin Butadiene Rubber), 1, 3-Phenylene-bisoxazoline is dealing with Dynamic Vulcanized by content and added rubber properties, thermal variation observed. As a result, the properties of the dynamic vulcanization with NBR compared to other rubber heat resistance and oil resistance is on the increase.

INNOVATIVE CONCEPT FOR AN ULTRA-SMALL NUCLEAR THERMAL ROCKET UTILIZING A NEW MODERATED REACTOR

  • NAM, SEUNG HYUN;VENNERI, PAOLO;KIM, YONGHEE;LEE, JEONG IK;CHANG, SOON HEUNG;JEONG, YONG HOON
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.678-699
    • /
    • 2015
  • Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for nearterm human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of $100MW_{th}$ and an electricity generation mode of $100MW_{th}$, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and thermohydraulics was carried out. The result indicates that the innovative design has great potential for high propellant efficiency and thrust-to-weight of engine ratio, compared with the existing NTR designs. However, the build-up of fission products in fuel has a significant impact on the bimodal operation of the moderated reactor such as xenon-induced dead time. This issue can be overcome by building in excess reactivity and control margin for the reactor design.

A Study on Creep Effect of Synthetic Fiber Rope Mooring System on Motion Response of Vessel and Tension of Mooring Line (섬유로프 계류시스템의 크리프 효과가 부유체의 운동응답 및 계류선의 장력 변화에 미치는 영향에 관한 연구)

  • Park, Sung Min;Lee, Seung Jae;Kang, Soo Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.151-160
    • /
    • 2017
  • Growing demand and rapid development of the synthetic fiber rope in mooring system have taken place since it has been used in deep water platform lately. Unlike a chain mooring, synthetic fiber rope composed of lightweight materials such as Polyester(polyethylene terephthalate), HMPE(high modulus polyethylene) and Aramid(aromatic polyamide). Non-linear stiffness and another failure mode are distinct characteristics of synthetic fiber rope when compared to mooring chain. When these ropes are exposed to environmental load for a long time, the length of rope will be increased permanently. This is called 'the creep phenomenon'. Due to the phenomenon, The initial characteristics of mooring systems would be changed because the length and stiffness of the rope have been changed as time goes on. The changed characteristics of fiber rope cause different mooring tension and vessel offset compared to the initial design condition. Commercial mooring analysis software that widely used in industries is unable to take into account this phenomenon automatically. Even though the American Petroleum Institute (API) or other classification rules present some standard or criteria with respect to length and stiffness of a mooring line, simulation guide considers the mechanical properties that is not mentioned in such rules. In this paper, the effect of creep phenomenon in the fiber rope mooring system under specific environment condition is investigated. Desiged mooring system for a Mobile Offshore Drilling Unit(MODU) with HMPE rope which has the highest creep is analyzed in a time domain in order to investigate the effects creep phenomenon to vessel offset and mooring tension. We have developed a new procedure to an analysis of mooring system reflecting the creep phenomenon and it is validated through a time domain simulation using non-linear mooring analysis software, OrcaFlex. The result shows that the creep phenomenon should be considered in analysis procedure because it affects the length and stiffness of synthetic fiber rope in case of high water temperature and permanent mooring system.

The Need for Weight Optimization by Design of Rolling Stock Vehicles

  • Ainoussa, Amar
    • International Journal of Railway
    • /
    • v.2 no.3
    • /
    • pp.124-126
    • /
    • 2009
  • Energy savings can be achieved with optimum energy consumptions, brake energy regeneration, efficient energy storage (onboard, line side), and primarily with light weight vehicles. Over the last few years, the rolling stock industry has experienced a marked increase in eco-awareness and needs for lower life cycle energy consumption costs. For rolling stock vehicle designers and engineers, weight has always been a critical design parameter. It is often specified directly or indirectly as contractual requirements. These requirements are usually expressed in terms of specified axle load limits, braking deceleration levels and/or demands for optimum energy consumptions. The contractual requirements for lower weights are becoming increasingly more stringent. Light weight vehicles with optimized strength to weight ratios are achievable through proven design processes. The primary driving processes consist of: $\bullet$ material selection to best contribute to the intended functionality and performance $\bullet$ design and design optimization to secure the intended functionality and performance $\bullet$ weight control processes to deliver the intended functionality and performance Aluminium has become the material of choice for modern light weight bodyshells. Steel sub-structures and in particular high strength steels are also used where high strength - high elongation characteristics out way the use of aluminium. With the improved characteristics and responses of composites against tire and smoke, small and large composite materials made components are also found in greater quantities in today's railway vehicles. Full scale hybrid composite rolling stock vehicles are being developed and tested. While an "overdesigned" bodyshell may be deemed as acceptable from a structural point of view, it can, in reality, be a weight saving missed opportunity. The conventional pass/fail structural criteria and existing passenger payload definitions promote conservative designs but they do not necessarily imply optimum lightweight designs. The weight to strength design optimization should be a fundamental design driving factor rather than a feeble post design activity. It should be more than a belated attempt to mitigate against contractual weight penalties. The weight control process must be rigorous, responsible, with achievable goals and above all must be integral to the design process. It should not be a mere tabulation of weights for the sole-purpose of predicting the axle loads and wheel balances compliance. The present paper explores and discusses the topics quoted above with a view to strengthen the recommendations and needs for the weight optimization by design approach as a pro-active design activity for the rolling stock industry at large.

  • PDF

A Study on Spatial Characteristics of Post-Disaster Interim Housing - Focusing on Asian Precedents of Natural Disasters - (재난 이후 임시주거의 공간특성 연구 - 아시아지역에서 발생한 자연재난을 중심으로 -)

  • Kim, sara;Nam, Kyung-Sook
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.5
    • /
    • pp.108-116
    • /
    • 2015
  • This study intends to research the spatial characteristics of Asian interim housing that accommodates sufferers pro tempore after disasters. The scope of this research covers the interim spaces used for housing people after natural disasters that occurred in Asia for the past fifteen years. Within this scope, literature review was conducted as the basis to derive the characteristics and environmental elements of interim housing, which provided the criteria to compare and evaluate cases of interim housing along with characteristic elements required of interim housing found in previous studies. According to literature review, interim housing can be classified by life-span, region, economy, climate, type, number of household, square measure, residential cost, structure/material, and service life. Within the scope of the present research, literature review showed a total of twenty-eight cases of interim housing in fifteen countries revealing a high rate of disaster occurrence in the subtropic and tropic climate of Southeast Asia. A great percentage of interim housing was used for long-term stay of over a year. The structure of interim housing varied from lightweight steel, wooden, masonry, membrane, to traditional structure and the type were divided into temporary shelter, transitional housing, temporary housing, and permanent housing. Followed by literature review, the characteristics required of post-disaster interim housing were analyzed based on previous research and case studies. The characteristics of interim housing can be divided into environmental, technological, and socio-cultural ones. Sub-characterical items according to such division include amenity, health, surroundings, structure, convenience, eco-friendliness, safety, communication, and locality. As a result of evaluation, most items met the required characteristics of interim housing, while technological characteristics such as structure and convenience varied with the types of interim housing and appeared even unnecessary in some cases. According to analysis, amenity is maintained through the structural and material characteristics of interim housing and is also facilitated by increasing number of infrastructure such as educational, sanitary, and convenience facilities provided by the governmental and organizational bodies. It is expected that this study will be utilized as preliminary data for follow-up studies that improve the environment of post-disaster interim housing suitable for domestic circumstances in environmental, technological, and socio-cultural respects.

An Enhanced System of Group Key Management Based on MIPUF in IoT (IoT 환경의 MIPUF 기반 그룹키 관리 시스템 개선)

  • Tak, Geum Ji;Jeong, Ik Rae;Byun, Jin Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1243-1257
    • /
    • 2019
  • With the emergence of the IoT environment, various smart devices provide consumers with the convenience and various services. However, as security threats such as invasion of privacy have been reported, the importance of security issues in the IoT environment has emerged, and in particular, the security problem of key management has been discussed, and the PUF has been discussed as a countermeasure. In relation to the key management problem, a protocol using MIPUF has been proposed for the security problem of the group key management system. The system can be applied to lightweight IoT environments and the safety of the PUF ensures the safety of the entire system. However, in some processes, it shows vulnerabilities in terms of safety and efficiency of operation. This paper improves the existing protocol by adding authentication for members, ensuring data independence, reducing unnecessary operations, and increasing the efficiency of database searches. Safety analysis is performed for a specific attack and efficiency analysis results are presented by comparing the computational quantities. Through this, this paper shows that the reliability of data can be improved and our proposed method is lighter than existing protocol.

On Resistance of Bit Permutation Based Block Cipher against Nonlinear Invariant Attack (비트 순열 기반 블록암호의 비선형 불변 공격 저항성 연구)

  • Jeong, Keonsang;Kim, Seonggyeom;Hong, Deukjo;Sung, Jaechul;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.3
    • /
    • pp.325-336
    • /
    • 2020
  • Nonlinear Invariant Attack is an attack that should be considered when constructing lightweight block ciphers with relatively simple key schedule. A shortcut to prove a block cipher's resistance against nonlinear invariant attack is checking the smallest dimension of linear layer-invariant linear subspace which contains all known differences between round keys is equal to the block size. In this paper, we presents the following results. We identify the structure and number of optimal bit-permutations which require only one known difference between round keys for a designer to show that the corresponding block cipher is resistant against nonlinear invariant attack. Moreover, we show that PRESENT-like block ciphers need at least two known differences between round keys by checking all PRESENT-like bit-permutations. Additionally, we verify that the variants of PRESENT-like bit-permutations requiring the only two known differences between round keys do not conflict with the resistance against differential attack by comparing the best differential trails. Finally, through the distribution of the invariant factors of all bit-permutations that maintain BOGI logic with GIFT S-box, GIFT-variant block ciphers require at least 8 known differences between round keys for the resistance.

A Study on Low-Cost RFID System Mutual Authentication Scheme using Key Division (키 분할을 이용한 Low-Cost RFID 시스템 상호 인증 방안에 관한 연구)

  • Kang, Soo-Young;Lee, Im-Yeong
    • The KIPS Transactions:PartC
    • /
    • v.14C no.5
    • /
    • pp.431-438
    • /
    • 2007
  • RFID system is core technology that construct ubiquitous environment for replacement of barcode technology. Use ratio of RFID system rapidly increase because the technology has many good points such as identification speed, storage space, convenience etc. But low-cost tag operates easily by query of reader, so the system happened user privacy violent problem by tag information exposure. The system studied many ways for security application, but operation capability of low-cost tag is about $5K{\sim}10K$ gates, but only $250{\sim}3K$ gates allocated security part. So it is difficult to apply security to the system. Therefore, this scheme uses dividing 64 bits and reduces arithmetic, so proposed scheme provide mutual authentication that can apply to low-cost RFID system. Existing methods divide by 4 and used 96 bits. However, that reduces 32 bits length for lightweight and reduced from communication number of times of 7 times to 5 times. Also, because offer security by random number than existing scheme that generate two random numbers, that is more efficient. However, uses hash function for integrity that was not offered by XOR arithmetic and added extension of proposed scheme. Extended scheme is not offered efficiency than methods that use XOR arithmetic, but identification distance is mode that is proposed secure so that can use in for RFID system.