• Title/Summary/Keyword: lighting model

Search Result 316, Processing Time 0.02 seconds

Improvement of Multiple-sensor based Frost Observation System (MFOS v2) (다중센서 기반 서리관측 시스템의 개선: MFOS v2)

  • Suhyun Kim;Seung-Jae Lee;Kyu Rang Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.226-235
    • /
    • 2023
  • This study aimed to supplement the shortcomings of the Multiple-sensor-based Frost Observation System (MFOS). The developed frost observation system is an improvement of the existing system. Based on the leaf wetness sensor (LWS), it not only detects frost but also functions to predict surface temperature, which is a major factor in frost occurrence. With the existing observation system, 1) it is difficult to observe ice (frost) formation on the surface when capturing an image of the LWS with an RGB camera because the surface of the sensor reflects most visible light, 2) images captured using the RGB camera before and after sunrise are dark, and 3) the thermal infrared camera only shows the relative high and low temperature. To identify the ice (frost) generated on the surface of the LWS, a LWS that was painted black and three sheets of glass at the same height to be used as an auxiliary tool to check the occurrence of ice (frost) were installed. For RGB camera shooting before and after sunrise, synchronous LED lighting was installed so the power turns on/off according to the camera shooting time. The existing thermal infrared camera, which could only assess the relative temperature (high or low), was improved to extract the temperature value per pixel, and a comparison with the surface temperature sensor installed by the National Institute of Meteorological Sciences (NIMS) was performed to verify its accuracy. As a result of installing and operating the MFOS v2, which reflects these improvements, the accuracy and efficiency of automatic frost observation were demonstrated to be improved, and the usefulness of the data as input data for the frost prediction model was enhanced.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Analysis of the Landscape Characteristics of Island Tourist Site Using Big Data - Based on Bakji and Banwol-do, Shinan-gun - (빅데이터를 활용한 섬 관광지의 경관 특성 분석 - 신안군 박지·반월도를 대상으로 -)

  • Do, Jee-Yoon;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.61-73
    • /
    • 2021
  • This study aimed to identify the landscape perception and landscape characteristics of users by utilizing SNS data generated by their experiences. Therefore, how to recognize the main places and scenery appearing on the island, and what are the characteristics of the main scenery were analyzed using online text data and photo data. Text data are text mining and network structural analysis, while photographic data are landscape identification models and color analysis. As a result of the study, First, as a result of frequency analysis of Bakji·Banwol-do topics, we were able to derive keywords for local landscapes such as 'Purple Bridge', 'Doori Village', and location, behavior, and landscape images by analyzing them simultaneously. Second, the network structure analysis showed that the connection between key and undrawn keywords could be more specifically analyzed, indicating that creating landscapes using colors is affecting regional activation. Third, after analyzing the landscape identification model, it was found that artificial elements would be excluded to create preferred landscapes using the main targets of "Purple Bridge" and "Doori Village", and that it would be effective to set a view point of the sea and sky. Fourth, Bakji·Banwol-do were the first islands to be created under the theme of color, and the colors used in artificial facilities were similar to the surrounding environment, and were harmonized with contrasting lighting and saturation values. This study used online data uploaded directly by visitors in the landscape field to identify users' perceptions and objects of the landscape. Furthermore, the use of both text and photographic data to identify landscape recognition and characteristics is significant in that they can specifically identify which landscape and resources they prefer and perceive. In addition, the use of quantitative big data analysis and qualitative landscape identification models in identifying visitors' perceptions of local landscapes will help them understand the landscape more specifically through discussions based on results.

Thermal Behavior and Leaf Temperature in a High Pressure Sodium Lamp Supplemented Greenhouse (고압나트륨등 보광 온실의 열적 거동 및 엽온 분석)

  • Seungri Yoon;Jin Hyun Kim;Minju Shin;Dongpil Kim;Ji Wong Bang;Ho Jeong Jeong;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.48-56
    • /
    • 2023
  • High-pressure sodium (HPS) lamps have been widely used as a useful supplemental light source to emit sufficient photosynthetically active radiation and provide a radiant heat, which contribute the heat requirement in greenhouses. The objective of this study to analyze the thermal characteristics of HPS lamp and thermal behavior in supplemented greenhouse, and evaluate the performance of a horizontal leaf temperature of sweet pepper plants using computational fluid dynamics (CFD) simulation. We simulated horizontal leaf temperature on upper canopy according to three growth stage scenarios, which represented 1.0, 1.6, and 2.2 plant height, respectively. We also measured vertical leaf and air temperature accompanied by heat generation of HPS lamps. There was large leaf to air temperature differential due to non-uniformity in temperature. In our numerical calculation, thermal energy of HPS lamps contributed of 50.1% the total heat requirement on Dec. 2022. The CFD model was validated by comparing measured and simulated data at the same operating condition. Mean absolute error and root mean square error were below 0.5, which means the CFD simulation values were highly accurate. Our result about vertical leaf and air temperature can be used in decision making for efficient thermal energy management and crop growth.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

Landscape Object Classification and Attribute Information System for Standardizing Landscape BIM Library (조경 BIM 라이브러리 표준화를 위한 조경객체 및 속성정보 분류체계)

  • Kim, Bok-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.103-119
    • /
    • 2023
  • Since the Korean government has decided to apply the policy of BIM (Building Information Modeling) to the entire construction industry, it has experienced a positive trend in adoption and utilization. BIM can reduce workloads by building model objects into libraries that conform to standards and enable consistent quality, data integrity, and compatibility. In the domestic architecture, civil engineering, and the overseas landscape architecture sectors, many BIM library standardization studies have been conducted, and guidelines have been established based on them. Currently, basic research and attempts to introduce BIM are being made in Korean landscape architecture field, but the diffusion has been delayed due to difficulties in application. This can be addressed by enhancing the efficiency of BIM work using standardized libraries. Therefore, this study aims to provide a starting point for discussions and present a classification system for objects and attribute information that can be referred to when creating landscape libraries in practice. The standardization of landscape BIM library was explored from two directions: object classification and attribute information items. First, the Korean construction information classification system, product inventory classification system, landscape design and construction standards, and BIM object classification of the NLA (Norwegian Association of Landscape Architects) were referred to classify landscape objects. As a result, the objects were divided into 12 subcategories, including 'trees', 'shrubs', 'ground cover and others', 'outdoor installation', 'outdoor lighting facility', 'stairs and ramp', 'outdoor wall', 'outdoor structure', 'pavement', 'curb', 'irrigation', and 'drainage' under five major categories: 'landscape plant', 'landscape facility', 'landscape structure', 'landscape pavement', and 'irrigation and drainage'. Next, the attribute information for the objects was extracted and structured. To do this, the common attribute information items of the KBIMS (Korean BIM Standard) were included, and the object attribute information items that vary according to the type of objects were included by referring to the PDT (Product Data Template) of the LI (UK Landscape Institute). As a result, the common attributes included information on 'identification', 'distribution', 'classification', and 'manufacture and supply' information, while the object attributes included information on 'naming', 'specifications', 'installation or construction', 'performance', 'sustainability', and 'operations and maintenance'. The significance of this study lies in establishing the foundation for the introduction of landscape BIM through the standardization of library objects, which will enhance the efficiency of modeling tasks and improve the data consistency of BIM models across various disciplines in the construction industry.