• Title/Summary/Keyword: light-weight beam

Search Result 85, Processing Time 0.03 seconds

Manufacture of light-weight machine tool structures using composite materials (복합재료를 이용한 경량 공작기계 구조물 제작에 관한 연구)

  • Suh, Jung-Do;Lee, Dai-Gil;Kim, Hak-Sung;Kim, Jong-Min;Choi, Jin-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.189-196
    • /
    • 2001
  • Machine tools of high-speed and high-precision are required for various fields of industry such as semiconductor, automobile, mold fabrication and so on. Light-weight machine tool structure is essential for reduction of production time through rapid transportation. Also, high damping capacity of the structure is required to obtain precise products without vibration during manufacturing. Composite materials have high potential for machine tool structures due to its high specific stiffness and good damping characteristics. In this study, the design and the manufacture of a hybrid machine tool structure using composite materials was attempted and the damping capacity was investigated experimentally.

  • PDF

A Study on the Applicability of Shrinkage Reduction Effect of Light-weight Aggregate Concrete (경량골재 콘크리트의 수축 저감효과에 관한 적용성 연구)

  • Lim, Sang-Jun;Bang, Chang-Joon;Park, Jong-Hyok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.175-176
    • /
    • 2011
  • Applying previous studies performed in the moisture transportation characteristics and shrinkage of lightweight concrete application of shrinkage reduction is to discuss. Applicability of shrinkage reduction effect of lightweight concrete applies for the analysis of PSC girder bridge beam placed on the construction site. Stress of the concrete bridge deck, rebar quantity is calculated by effective elastic modulus method and crack risk is assessed by moisture transport and differential shrinkage analysis. After approximately 10 days maximum tensile stress occurs 6MPa, similar to the case of normal concrete, a maximum tensile stress occurs 3MPa in lightweight concrete and comparing to normal concrete stress was reduced to approximately 50%. Normal and lightweight concrete crack index, respectively, is reduced 1.6 to 1.2, 1.2 to 0.9 in surface and boundary region. Therefore, reduction in shrinkage of concrete were able to confirm reduction of crack risk.

  • PDF

Effectiveness of piezoelectric fiber reinforced composite laminate in active damping for smart structures

  • Chahar, Ravindra Singh;Ravi Kumar, B.
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.387-396
    • /
    • 2019
  • This paper deals with the effect of ply orientation and control gain on tip transverse displacement of functionally graded beam layer for both active constrained layer damping (ACLD) and passive constrained layer damping (PCLD) system. The functionally graded beam is taken as host beam with a bonded viscoelastic layer in ACLD beam system. Piezoelectric fiber reinforced composite (PFRC) laminate is a constraining layer which acts as actuator through the velocity feedback control system. A finite element model has been developed to study actuation of the smart beam system. Fractional order derivative constitutive model is used for the viscoelastic constitutive equation. The control voltage required for ACLD treatment for various symmetric ply stacking sequences is highest in case of longitudinal orientation of fibers of PFRC laminate over other ply stacking sequences. Performance of symmetric and anti-symmetric ply laminates on damping characteristics has been investigated for smart beam system using time and frequency response plots. Symmetric and anti-symmetric ply laminates significantly reduce the amplitude of the vibration over the longitudinal orientation of fibers of PFRC laminate. The analysis reveals that the PFRC laminate can be used effectively for developing very light weight smart structures.

Design Process of Light-weighted Fuel Cell Vehicle Body Frame (경량 연료전지 차체프레임 설계 프로세스)

  • Kim, Ki-Tae;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.114-121
    • /
    • 2010
  • This paper presents a design process of light-weighted fuel cell vehicle (FCV) frame to meet design target of natural frequency in early design stage. At first, using validated FE model for the current design, thickness optimization was carried out. Next. optimization process, comprised of beam model size optimization, shell model design and shell model thickness optimization, was investigated for two frame types. In addition, in order to ensure hydrogen tanks safety against rear impact load, structural collapse characteristics was estimated for the rear frame model finally produced from the previous optimization process and, with the target of equal collapse characteristics to the current design model, structural modification with small weight increase was studied through static structural collapse analyses. The same attempt was applied to the front side frame. The results explain that the proposed process enables to design light-weighted frames with high structural performance in early stage.

Light-Weight Design of Automotive Tension Link Based on Computer Aided Engineering (컴퓨터 시뮬레이션을 이용한 자동차용 텐션 링크의 경량 설계)

  • Kim, Kee Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.561-566
    • /
    • 2017
  • The weight reduction design process of tension links could be studied based on the variation of tension, bending and torsional stiffness after substituting STKM11A steels with aluminum alloys (A356) with tensile strength of 245 MPa. The existed I-beam type link component may have a weak point for loads applied from a special direction. Therefore, it was investigated to the optimal shape of the link component that could withstand loads from all directions and at the same time reduce weight. Various types of link shapes were designed and analyzed, and the optimized shape was found. The optimized design can reduce over 40% of the original steel link weight, and it could be suggested for light-weight design guides and safe design conditions for the development of tension links.

Design of Cylindrical Composite Shell for Optimal Dimensions (최적 단면 치수를 가지는 복합재료 중공빔의 설계)

  • Chun Heong-Jae;Park Hyuk-Sung;Choi Yong-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.219-226
    • /
    • 2005
  • In this study, the problem formulation and solution technique using genetic algorithms for design optimization of laminate composite cylindrical beam section are presented. The hollow cylindrical beams we usually used in the wheel chair. If the weight of wheel chair is reduced, it will lead to huge improvement in passenger's mobility and comfort. In this context, the replacement of steel by high performance and light weight composite material along with optimal design will be a good contribution in the process of weight reduction of a wheel chair. An artificial genetics approach for the design optimization of hollow cylindrical composite beam is presented. On applying the genetic algorithm, the optimal dimensions of hollow cylindrical composite beams which have equivalent rigidities to those of corresponding hollow cylindrical steel beams are obtained. Also structural analysis is conducted on the entire wheel chair structure incorporating Tsai-Wu failure criteria. The maximum Tsai-Wu failure criteria index is $0.192\times10^{-3}$ which is moth less than value of 1.00 indicating no failure is observed under excessive loading condition. It is found that the substitution of steel by composite material could reduce the weight of wheel chair up to 45%.

An Experimental Study on the Lightfast of Silk Fabrics (견직물의 내광성에 관한 연구)

  • 박일록
    • Journal of the Korean Home Economics Association
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 1982
  • This experiment was made on the basis of the general observation that silk fabrics is flaccid in sun light. The purpose of this test is to examine efficiency between the processed thread and the unprocessed one after putting the later under the xenon-lit system, which produces continuous spectrum of bright white beam similar to sun light. (i) Color division of silk thread : white, yellow blue (ii) light division and irradiation time : sun lightlongrightarrow210 hrs, Xenonlongrightarrow50,100, 150 hrs. Under the above conditions each object was be tested with and extensometer, TENSILON Type III for the results of (a) the weight-expansibility curve of the silk thread (b) the relationship between cutting in tensity and maximum, weight (c) maximum expansion rate (d) the expansion energy of the tested silk thread (e) the beginning pull-stretch resistance rate of the tested silk thread (f) color difference after processing The results are illustrated in the appropriate tables and figures. Consequently the generalobservation that silk fabrics is flaccid is relevant only in terms of color. So for as Cutting-intensaty is concerned, it turned out to be less flaccid than in color. On the contrary when the untested silk thread was conpared with the xenon-irradiated ones, the latter proved itself to be more flaccid in cutting expansibility than the former. We have learned through this experiment that, after the all rounds of this test, the color tone and chroma of the colored materials remained without significant change, where as their color value changed to a large extent.

  • PDF

Experimental Investigations of Relationships between Resonance Frequencies and Elastic Moduli of Composite Materials by Impulse Excitation Method (Impulse Excitation Method에 의한 복합재료의 공진 주파수와 탄성계수 관계에 대한 실험적 고찰)

  • Kim, Hyeong-Sam;Lee, Jae-Hyeok;Lee, Dong-Sik;Park, Se-Man
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.843-848
    • /
    • 1998
  • The Usages of composite materials have been steadily on the rise in the industries of automobiles, air crafts, shipbuilding and other structures for transportations. Commonly required in those industries are light weight and high strength of the structures. Consequently, serious efforts in research have been focused on searching for light materials and on developments and characterizations of advanced substitutes including various kinds of composite materials. In this investigation, transversely isotropic composite materials are chosen and formed into two kinds of beams; Euler-Bernoulli beam(thin team) and Timoshenko beam(thick beam) for determinations of elastic constants. As an experimental technique Impulse Excitation Method is utilized to measure resonance frequencies of the beams of the composite materials in vibration tests. Elastic constants are evaluated from measured resonance frequencies for the two types of beams to observe and establish possible existence of effects of rotary inertia and shear deformations.

  • PDF

Decay Process of Charge Distribution in E-beam Irradiated Polymers (전자빔 조사 폴리머의 전자 분포의 축퇴 과정)

  • Choi, Yong-Sung;Kim, Hyung-Gon;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.69-72
    • /
    • 2008
  • Decay processes of accumulated charge in e-beam irradiated polymers during elevating temperature are observed using pulsed electro-acoustic measurement system. Since the polymeric materials have many superior properties such as light-weight, good mechanical strength, high flexibility and low cost, they are inevitable materials for spacecrafts. In space environment, however, the polymers sometimes have serious damage by irradiation of high energy charged particles. When the polymers of the spacecraft are irradiated by high energy charged particles, some of injected charges accumulate and remain for long time in the bulk of the polymers. Since the bulk charges sometimes cause the degradation or breakdown of the materials, the investigation of the charging and the decay processes in polymeric materials under change of temperature is important to decide an adequate material for the spacecrafts. By measuring the charge behavior in e-beam irradiated polymer, such as polyimide or polystyrene, it is found that the various accumulation and decay patterns are observed in each material. The results seem to be useful and be helpful to progress in the reliability of the polymers for the spacecraft.

  • PDF

Decay Process of Charge Distribution in E-Beam Irradiated Polymers (E-빔 조사된 폴리머의 전하 분포의 축퇴 과정)

  • Yun, Ju-Ho;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.329-330
    • /
    • 2007
  • Decay processes of accumulated charge in e-beam irradiated polymers during elevating temperature are observed using pulsed electro-acoustic measurement system. Since the polymeric materials have many superior properties such as light-weight, good mechanical strength, high flexibility and low cost, they are inevitable materials for spacecrafts. In space environment, however, the polymers sometimes have serious damage by irradiation of high energy charged particles. When the polymers of the spacecraft are irradiated by high energy charged particles, some of injected charges accumulate and remain for long time in the bulk of the polymers. Since the bulk charges sometimes cause the degradation or breakdown of the materials, the investigation of the charging and the decay processes in polymeric materials under change of temperature is important to decide an adequate material for the spacecrafts. By measuring the charge behavior in e-beam irradiated polymer, such as polyimide or polystyrene, it is found that the various accumulation and decay patterns are observed in each material. The results seem to be useful and be helpful to progress in the reliability of the polymers for the spacecraft.

  • PDF