• 제목/요약/키워드: light-oil boiler

검색결과 12건 처리시간 0.183초

경유와 바이오오일 혼합연료의 연소에 대한 실험연구 (Experimental Study on Combustion of Boiler Fuel Made of Light-Oil and Bio-Oil)

  • 양제복;이인구;황경란
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.201-204
    • /
    • 2012
  • Combustion characteristics of boiler fuels made of bio-oil and light-oil were experimentally investigated. Bio-oil was obtained by fast pyrolysis of woody biomass. Emulsion fuel made by mixing bio-oil (up to 30wt%) with light-oil and surfactant was completely burnt, resulting in the formation of combusted gas containing CO concentration less than 10ppm. Simple mixtures of bio-oil and light-oil with separate delivery lines also gave nice combustion characteristics.

  • PDF

바이오디젤의 난방유로서의 연료특성 (Fuel Qualities of Different Biodiesels in the Gun Type Burner)

  • 김영중;강연구;강금춘;유영선
    • Journal of Biosystems Engineering
    • /
    • 제33권2호
    • /
    • pp.124-129
    • /
    • 2008
  • In this study, fuel qualities including kinematic viscosity and pour point in the various temperature, calorific value and combustion characteristics of two biodiesels based on the soybean and waste oil blended with light oil were investigated and discussed in order to figure out to confirm fuel compatibility taking the place of light oil in the hot air heater or boiler. As biodiesel content ratio increased calorific value of biodiesel decreased, and the difference was 13% between 100%-biodiesel and light oil. In general, pour points of the biodiesels were higher than light oil, and as biodiesel content ratio increased pour point increased. About 15 cSt was the pour point of biodiesels and light oil, which occurred at 3 to $4^{\circ}C$ in the biodiesels and $-25^{\circ}C$ in the light oil. Flame dimensions of biodiesels and light oil were almost same at the same combustion condition in the burner of the hot air heater. CO concentrations in the exhaustion gas were far lower than those of the light oil. Though pour point of biodiesel is a little inferior to light oil, still biodiesel can be an alternative fuel substituting for light oil in combustion system without much modifying the current oil combustion mechanism.

소형 화목보일러의 개발 및 성능시험 (The Development and Performance Test of a Small Wood Boiler)

  • 김사량;이종석
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.491-497
    • /
    • 2002
  • In the present study, a new wood boiler was developed through the performance test. The efficiency of the boiler was obtained up to about 63.7%, which is 67% higher than that of conventional wood boiler, about 38.2%. The structure of the new boiler is more complicated than the conventional boiler. The passage of combustion gas is sufficiently long to exchange heat well with heating water. Therefore, the obtained efficiency is so high, and the temperature of exhaust gas was lower than 200$^{\circ}C$, which is as low as that of light oil boiler. The composition of exhaust gas was measured, and the CO gas concentration was obtained more than 3000 ppm. So, it seems that more study is needed to lower the concentration of CO gas.

전기하전식 세정집진장치 개발에 관한 기초 연구 (A Basic Study on Developing an Electrocharged Scrubber)

  • 김종호
    • 한국대기환경학회지
    • /
    • 제15권1호
    • /
    • pp.33-39
    • /
    • 1999
  • This study has been performed to develop an efficient electrocharged scrubber. To improve collection efficiency of the scrubber, electric-charger was installed at the forefront of the packed crossflow scrubbers, and an experiment of changing discharge electrode shape and fluctuating electric field strength was undertaken. After using a light-oil boiler for generation of particles in the about 80% weight of submicron size particles was exhausted. Collection characteristics of the electrocharged scrubber were similar to those of two-stage electrostatic precipitator. In this study the collection efficiency of submicron size particles has been much improved, compared with the previous ones. In an experiment of changing discharge electrode and electric field strength, a needle-spike shape wire electrode showed a higher collection efficiency than round shape wire. The collection efficiency becomes increased with an increase of electric field strength.

  • PDF

6kW급 태양열 온수급탕 시스템의 실증실험 및 분석 (제4보 경제성비교 및 경쟁력강화) (Verification Experiment and Analysis for 6kW Solar Water Heating System (Part 4 : Comparing Economics and Raising Competitiveness))

  • 이봉진;강채동;이상렬;홍희기
    • 설비공학논문집
    • /
    • 제17권3호
    • /
    • pp.232-242
    • /
    • 2005
  • It has been recognized that solar water heating systems are economically inferior to conventional gas water-heaters and boilers using light oil as fuel in spite of having practical possibilities among other alternative energy facilities in Korea. The solar system, however, should be revaluated due to the sharp rise of oil prices recently. We have calculated the energy amount and cost through a series of research projects for the system by experiment and simulation, which lead to analyzing reliable life cycle costs. For the economic analysis, the gas water-heater and light oil boiler were taken as base cases while the solar systems implemented with these facilities were compared as alternatives. As a result, the solar system using the light oil as an auxiliary fuel surpassed the light oil boiler in economics. And a $50\%$ government subsidy for the initial cost is needed to maintain competitiveness with the gas hot-water heater. With this support, the simple payback period of the system can approach 12.8 years under $20\%$ additional curtailment of expenditure.

Combustion Characteristics of a Hot Water Boiler System Convertibly Fueled by Rice Husk and Heavy Oil - Heavy Oil Combustion Characteristics -

  • Kim, Myoung Ho;Kim, Dong Sun;Park, Seung Je
    • Journal of Biosystems Engineering
    • /
    • 제38권4호
    • /
    • pp.306-311
    • /
    • 2013
  • Purpose: With the ever-rising energy prices, thermal energy heavily consuming facilities of the agricultural sector such as commercialized greenhouses and large-scale Rice Processing Complexes (RPCs) need to cut down their energy cost if they must run profitable businesses continually. One possible way to reduce their energy cost is to utilize combustible agricultural by-products or low-price oil instead of light oil as the fuel for their boiler systems. This study aims to analyze the heavy oil combustion characteristics of a newly developed hot water boiler system that can use both rice husk and heavy oil as its fuel convertibly. Methods: Heavy oil combustion experiments were conducted in this study employing four fuel feed rates (7.6, 8.5, 9.5, 11.4 $l/h$) at a combustion furnace vacuum pressure of 500 Pa and with four combustion furnace vacuum pressures (375, 500, 625, 750 Pa) at fuel feed rates of 9.5 and 11.4 $l/h$. Temperatures at five locations inside the combustion furnace and 20 additional locations throughout the whole hot water boiler system were measured to ascertain the combustion characteristics of the heavy oil. From the temperature measurement data, the thermal efficiency of the system was calculated. Flue gas smoke density and concentrations of air-polluting components in the flue gas were also measured by a gas analyzer. Results: As the fuel feed rate or combustion furnace vacuum pressure increased, the average temperature in the combustion furnace decreased but the thermal efficiency of the system showed no distinctive change. On the other hand, the thermal efficiency of the system was inversely proportionally to the vacuum level in the furnace. For all experimental conditions, the thermal efficiency remained in the range of 80.1-89.6%. The CO concentration in the flue gas was negligibly low. The NO and $SO_2$ concentration as well as the smoke density met the legal requirements. Conclusions: Considering the combustion temperature characteristics, thermal efficiency, and flue gas composition, the optimal combustion condition of the system seemed to be either the fuel feed rate of 9.5 $l/h$ with a combustion furnace vacuum pressure of 375 Pa or a fuel feed rate of 11.4 $l/h$ with a furnace vacuum pressure between 500 Pa and 625 Pa.

가정용 보일러의 유화연료 공급장치 개발 및 분무 특성에 관한 연구 (A Study on the Development of Emulsified Fuel Supplier and Spray Characteristics of Domestic Petroleum Boiler)

  • 윤면근;김용국;류정인
    • 한국분무공학회지
    • /
    • 제3권4호
    • /
    • pp.8-15
    • /
    • 1998
  • The spray characteristics of emulsified fuel of W/O type has been experimentally investigated. The mixture of light oil and water by using ultrasonic energy adding system is used as the emulsified fuel. The SMD of sprayed droplet of emulsified fuel is measured by using the particle size analyzer. Major parameters of the present experimental study are the volume fraction of water in emulsified fuel, $0\sim30%$ by 5%, injection pressure, $10kg_f/cm^2\sim18kg_f/cm^2$ by $2kg_f/cm^2$, and the measurement distance, $10\sim100mm$, between injection nozzle tip and analyzer beam. Compared with light oil, the SMD of emulsified fuel is larger gradually by increasing the volume fraction of water in emulsified fuel, heightening injection pressure and increasing the spray distance. Also, In considering the fact that the pattern of drop size distribution of emulsified fuel is alike that of light oil, the real time spray in coincidence with making emulsified fuel by adding ultrasonic energy can stabilize spray pattern without modificating the injection system used by now.

  • PDF

초음파 에너지로 제조된 유화연료의 수액이 분무 및 화염에 미치는 영향 (Effect of Water on Continuos Spray and Flame in Emulsified Fuel made by Ultrasonic Energy)

  • 이승진;류정인
    • 한국분무공학회지
    • /
    • 제10권3호
    • /
    • pp.9-16
    • /
    • 2005
  • To investigate spray and combustion of emulsified fuel of W/O type, we mixed water with light oil by using ultrasonic energy adding system. We measured the SMD of sprayed droplet to find atomization characteristics of emulsified fuel with using the Malvern 2600D system. Major parameters are the weight ratio of water($0{\sim}30%$ by 10%) in emulsified fuel injection pressure(lobar), and the measurement distance($10{\sim}100mm$ by 10mm). Combustion visualizing system is made up commonly used boiler system and digital camera 1/500s to investigate combustion phenomena. As a result, the more water contents increased, the more SMD increased. The water particle of emulsified fuel made short flame in continuos spray combustion phenomena because of micro explosion.

  • PDF

EXHAUST GAS HEAT RECOVERY SYSTEM FOR PLANT BED HEATING IN GREENHOUSE PRODUCTION

  • Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.;Kang, G.C.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.639-646
    • /
    • 2000
  • Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season in Korea. However, since the heat efficiency of the heater is about 80%, considerable unused heat in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust gas heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The system consists of a heat exchanger made of copper pipes, ${\phi}\;12.7{\times}0.7t$ located inside the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tame The total heat exchanger area is $1.5m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to performance test it can recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690{\ell}$/hr from the waste heat discharged. The exhaust gas temperature left from the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{circ}C$ from $21^{circ}C$ at the water flow rate of $690{\ell}$/hr. And, the condensed water amount varies from 16 to $43m{\ell}$ at the same water circulation rates. This condensing heat recovery system can reduce boiler fuel consumption amount in a day by 34% according to the feasibility study of the actual mimitomato greenhouse. No combustion load was observed in the hot air heater.

  • PDF

해수를 이용한 화력발전소 폐열회수 히트펌프 시스템 (Heat Pump System Using Heated Effluent of Thermal Power Generation Plant as a Heat Source)

  • 유영선;강연구;김영화;장재경;김종구;이형모;강금춘;나규동;허태현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.190-190
    • /
    • 2011
  • In South Korea the gross generation and heated effluent of power generation plant was 259 TWh and 4.73 billion tons in 2008. And then the waste heat from power generation was 388 TWh. It shows that the efficiency of thermal power generation plant is about 40%. Therefore to reduce $CO_2$ emission from thermal power generation plant, the energy of this heated effluent must be reused to heat buildings or farm facilities. In South Korea horticultural facilities of about 25% are heated in winter season. Total area of greenhouses which are heated is about 13,000 ha. Total heat amount needed to warm greenhouse of 13,000 ha in winter season is only 3.4% of total waste heat from power generation plant. In this study a heat pump system was designed to reuse the waste heat from power generation. Especially new heat exchanger was developed to recover the thermal energy from waste water and this model considered anti-corrosion against sea water and low cost for economic feasibility. This heat recovery system was installed in mango growing greenhouse around thermal power generation plant in Seogwipo-city, Jeju Special Self-Governing Province. The result of preliminary test shows that the heating cost of about 90% is saved as compared to boiler using tax free light oil as a fuel.

  • PDF