• Title/Summary/Keyword: light weight material

Search Result 586, Processing Time 0.036 seconds

Development of material for a Light weight partition wall using material of Gypsum (석고 재료를 이용한 경량칸막이 벽체 소재 개발에 대한 연구)

  • 박준철;윤요현;류희정;최영준;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.134-137
    • /
    • 2000
  • A study on the development of material for a light weight partition wall using material of gypsum and waste paper is be considered to improve workability, setting time, properties of strength by use of $\beta$-Gypsum for controling setting time. According th the experiments, as quantity of gypsum in binder increase, workability and strength of specimens deteriorate. Appropriate quantity of $\beta$-Gypsum was 3~6% of binder and When it was used more than 10%, setting time was so fast. When additive quantity of waste paper has increased to 1%, flexural strength decreased to some 8~12% and density decreased abort 3% in comparison with otherwise specimen.

  • PDF

A Study on Material Substitution Design and Evaluation Method for Structural Components of Rolling Stocks (철도차량 구조부품의 소재대체 설계 및 평가기법 연구)

  • 구정서;정현승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.74-84
    • /
    • 2004
  • In this paper, a theoretical method was derived to redesign carbody members by substituting light-weight materials, and to estimate their structural characteristics. Some performance indices to estimate structural behaviors were derived in order to obtain equivalent designs in case of material substitutions under important design constraints of rolling stock, such as bending stiffness, natural frequency, bending and buckling strength. Validity of the theoretical method was evaluated by comparing its results with finite element results in some examples where the aluminium alloy was substituted for the structural steel. The numerical results of the examples show that the proposed method gives reasonable initial guesses for the material substitution designs.

Weight-reduction Prediction for the Conceptual Design of Carbody with Shell Type Sections Using the Material Substitution Technique (쉘형 차체 구조의 소재대체 개념설계에 대한 경량화 예측 기법)

  • Koo, Jeong-Seo;Cho, Hyun-Jik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.17-26
    • /
    • 2007
  • In this paper, a theoretical approach is studied to predict structural performances and weight reduction rates of a car-body with shell type sections in case that its materials have to be substituted. For the material substitution design of a car-body, bending, axial and twisting deformations are considered under constant stiffness and strength conditions, which utilize some new indices derived from a structural performance point of view. The developed indices to measure the weight reduction by the material substitution give good guidelines on conceptual design of car-bodies.

A Study on the Finite Element Analysis of springback characteristics according to stamping process conditions of UHSS with UTS of 1.2GPa (1.2GPa급 초고강도강판의 공정조건에 따른 스프링백 특성에 관한 유한요소해석 연구)

  • Jang, Hyun-Min;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • The biggest topics in the automobile industry are light weightening and fuel efficiency improvement. There's a lot of research going on. It is focused on light weight materials. Light weight material is seen as the best way to reduce fuel consumption and to solve the problem of environmental pollution and resource depletion. For the light weight materials, new materials such as aluminum, magnesium, and carbon-hardening materials can be found. Research on the joining techniques of dual materials, improvement of material properties by improving the method of manufacture of existing materials, and studies on ultra-high strength steel sheets are expected to take up the most weight in lightweight materials. As the strength of the ultra-high strength steel sheets increases during forming, it is difficult to obtain dimensional precision due to the increase in elastic restoring force compared to mild or high strength steel sheets. Spring back is known to be affected by a number of factors due to poor plastic molding, and can be divided into the effects of the material spraying and the process. The study on the plasticitic variables were studied as plasticitic factors that can be controlled by a part company. Tensile testing of ultra-high strength materials was conducted to derive properties for plasticitic analysis and to analyze spring back with two factors controlling the height of the bead and blank holding force by adding tensile force and controlling the flow rate.

Effect of Hole Processing Condition on Carbon Fiber-Reinforced Plastic Composites for Lightweight Combat Backpack Frames (전투 배낭 프레임 경량화를 위한 섬유강화복합재의 홀가공 조건이 미치는 영향)

  • Kim, Hyeok-Jin;Kwon, Dong-Jun;Lee, Jea-Dong;Son, Hyun-Sik;Jin, Young-ho
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.241-249
    • /
    • 2022
  • As for military backpacks in Korea, utility backpack products equipped with various functions along with comfort and convenience are being developed. As a result, the volume and weight of the backpack increase, and many lightweight studies of the materials forming the backpack are being conducted. This study is a basic study on frame lightweight using fiber-reinforced composites to deal with aluminum, a back frame that maintains the shape of a backpack and provides stability when worn by combatants. As is known, only fiber-reinforced composites have sufficient light weight and mechanical properties, but the mechanical properties were reviewed by drilling holes to maximize the light weight. Tensile strength and flexural strength were measured by drilling 6mm, 12mm, 18mm, and 24mm holes, and the tensile strength and flexural strength were measured when 1, 3, 5, and 7 holes of 12mm were increased. As a result, even when the number of holes was increased, tensile strength did not change significantly, and the flexural strength showed to be higher in the case of 3 holes and 5 holes than in the case of 1 hole.

Engineering Characteristics of Light-weight Foamed CLSM using Coal Ash According to Final Mixing Time and Dilution Ratio (석탄회를 활용한 경량기포 저강도 고유동화재의 최종비빔시간과 희석비에 따른 공학적 특성)

  • Lee, Jong Hwi;Na, Jeong Hum;Lee, Chang Ki;Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1C
    • /
    • pp.17-25
    • /
    • 2012
  • CLSM (Controlled Low Strength Material) using coal ash, which has the advantages of self-leveling, self-compacting, flowability, easy re-excavation, has been developed. In this study, CLSM additionally mixed with foaming agent for structural backfill material, aimed at lightness of materials, was developed called light-weight foamed CLSM. As the basic study of this material, to determine the optimum final mixing time and dilution ratio of existing light-weight foamed CLSM, flow, slurry unit weight and unconfined compressive strength test according to each impact factor were performed at the standard mix proportion. As the results of tests, CASE N (Final mixing time 4 min, dilution ratio 2%), CASE O (Final mixing time 3 min, foam agents ratio 3%, dilution ratio 2%) were satisfied with the standard of flow test (above 20cm), slurry unit weight test (12~15 $kN/m^3$) and unconfined compressive strength test (800 kPa~1200 kPa). These results will indicate the standard optimum final mixing time and dilution ratio of light-weight foamed CLSM for structural backfill.

Thermal Insulation and Flame Retardant Properties of Cement Based Super Light-weight Inorganic Thermal Insulation using 100㎛ Grade Glass Bubble (100㎛급 글라스 버블 혼입 시멘트계 초경량 무기 단열재의 단열 및 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.642-649
    • /
    • 2021
  • Energy saving standard for buildings are strengthened, the application of exterior insulation finishing system and thickness of insulation materials are increasing. Most buildings with exterior insulation finishing system is applied organic insulating material. Organic insulating material have workability, economic feasibility, reduction in construction cost, and excellent thermal insulation performance. However, Organic insulating material is very vulnerable to heat, so when a fire occurs, rapid fire spread and toxic gas are generated, causing many casualties. Inorganic insulating material can be non-combustible performance, but it is heavy and has low thermal insulation performance. Mineral wool has higher thermal insulation performance than other types of inorganic insulating material, but mineral wool is disadvantageous to workability and vulnerable to moisture. Glass bubble are highly resistant to water and chemically stable substances. In addition, the density of the glass bubble is very low and the particles are spherical, fluidity is improved by the ball bearing effect. Glass bubbles can be used with cement-based ino rganic insulating material to impro ve the weight and thermal insulatio n perfo rmance o f cement-based inorganic insulation. This study produced a inorganic insulating materials were manufactured using cement-based materials and glass bubble. In order to evaluate the insulation performance and flame retardant performance of cement-based super light-weight inorganic insulating materials using with glass bubble, insulation performance or flame retardant and non-combustible performance were evaluated after manufacturing insulating materials using micro cement and two types of glass bubbles. From the test result, Increasing the mixing ratio of glass bubbles improved the insulation performance of cement-based super light-weight inorganic insulating materials, and when the mixing ratio of glass bubbles was 10%, it sho wed sufficient flame retardant and no n-co mbustible perfo rmance.

Growing Response of Cyrtomium falcatum and Rumohra aristata Indoor as Influenced by Light Quality Treatment (실내에서 광질이 도깨비고비와 가는쇠고사리의 생육에 미치는 영향)

  • Bang, Kwang-Ja;Ju, Jin-Hee;Kwon, Min-Hoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.49-53
    • /
    • 2004
  • This study was aimed to promote evergreen ferns native to Korea as a material for interior landscape by investigate effects of light quality on the growth of Cyrtomium falcatum and Rumohra aristata, in an indoor environment that artificial light was used, especially. Result of experiments are as follows; 1. Wavelengths were measured as control(=570~580nm), red(=600~610nm), yellow(=550~580nm), green(=500~510nm) and blue(=430~440nm) between different color film. The order of photon flux density was red>yellow>control>green>blue decreased. 2. Although there was no difference in the growth of Cyrtomium falcatum depending on light quality, in case of fronds with sori and new fronds, there were highest under red film. Fresh weight was no significant in all treatments, but dry weight was increased with green>control>yellow>blue>red in order. 3. In case of Rumohra aristata, there was no difference in its growth, however, number of total fronds was highest under green film. Although fresh weight was increased with yellow film, dry weight was highest under green film.

Development of gradient composite shielding material for shielding neutrons and gamma rays

  • Hu, Guang;Shi, Guang;Hu, Huasi;Yang, Quanzhan;Yu, Bo;Sun, Weiqiang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2387-2393
    • /
    • 2020
  • In this study, a gradient material for shielding neutrons and gamma rays was developed, which consists of epoxy resin, boron carbide (B4C), lead (Pb) and a little graphene oxide. It aims light weight and compact, which will be applied on the transportable nuclear reactor. The material is made up of sixteen layers, and the thickness and components of each layer were designed by genetic algorithm (GA) combined with Monte Carlo N Particle Transport (MCNP). In the experiment, the viscosities of the epoxy at different temperatures were tested, and the settlement regularity of Pb particles and B4C particles in the epoxy was simulated by matlab software. The material was manufactured at 25 ℃, the Pb C and O elements of which were also tested, and the result was compared with the outcome of the simulation. Finally, the material's shielding performance was simulated by MCNP and compared with the uniformity material's. The result shows that the shielding performance of gradient material is more effective than that of the uniformity material, and the difference is most noticeable when the materials are 30 cm thick.