• 제목/요약/키워드: light trapping

검색결과 132건 처리시간 0.061초

TCAD Simulation of Silicon Pillar Array Solar Cells

  • Lee, Hoong Joo
    • 반도체디스플레이기술학회지
    • /
    • 제16권1호
    • /
    • pp.65-69
    • /
    • 2017
  • This paper presents a Technology-CAD (TCAD) simulation of the characteristics of crystalline Si pillar array solar cells. The junction depth and the surface concentration of the solar cells were optimized to obtain the targeted sheet resistance of the emitter region. The diffusion model was determined by calibrating the emitter doping profile of the microscale silicon pillars. The dimension parameters determining the pillar shape, such as width, height, and spacing were varied within a simulation window from ${\sim}2{\mu}m$ to $5{\mu}m$. The simulation showed that increasing pillar width (or diameter) and spacing resulted in the decrease of current density due to surface area loss, light trapping loss, and high reflectance. Although increasing pillar height might improve the chances of light trapping, the recombination loss due to the increase in the carrier's transfer length canceled out the positive effect to the photo-generation component of the current. The silicon pillars were experimentally formed by photoresist patterning and electroless etching. The laboratory results of a fabricated Si pillar solar cell showed the efficiency and the fill factor to be close to the simulation results.

  • PDF

복합 스트레스에 의한 비정질 실리콘 박막 트랜지스터에서의 가속열화 현상 연구 (A Study of the Acclerated Degradation Phenomena on th Amorphous Silicon Thin Film Transistors with Multiple Stress)

  • 이성규;오창호;김용상;박진석;한민구
    • 대한전기학회논문지
    • /
    • 제43권7호
    • /
    • pp.1121-1127
    • /
    • 1994
  • The accelerated degradation phenomena in amorphous silicon thin film transistors due to both electrical stress and visible light illumination under the elevated temperature have been investigated systematically as a function of gate bias, light intensity, and stress time. It has been found that, in case of electrical stress, the thrshold voltage shifts of a-Si:H TFT's may be attributed to the defect creation process at the early stage, while the charge trapping phenomena may be dominant when the stressing periods exceed about 2 hours. It has been also observed that the degradation in the device characteristics of a-Si:H TFT's is accelerated due to multiple stress effects, where the defect creation mechanism may be more responsible for the degradation rather than the charge trapping mechanism.

790 nm의 반도체 레이저를 이용한 미세 입자의 포획 (Optical Trapping of Microparticles Using a 790 nm Semiconductor Laser)

  • 유석진;이진서;안지수;권남익
    • 한국광학회지
    • /
    • 제7권1호
    • /
    • pp.24-27
    • /
    • 1996
  • 790nm의 반도체 레이저를 이용하여 수용액 속에 잠겨있는 $3~4\mu\textrm{m}$크기의 yeast입자를 포획하는데 성공하였다. 포획된 입자는 2차원 평면과 3차원 공간의 이동에도 안정된 포획 상태를 유지하였다. 이 실험으로 레이저 광속이 매질과 입자의 표면에서 굴절할 때, 입자의 굴절률과 매질의 굴절률의 차에 의하여 생기는 광압의 존재를 확인하였다. 그리고 레이저 광속에 수직하게 입자를 움직이면서 레이저 광속에 수직한 방향의 포획력을 측정하고 레이저의 출력에 따른 변화를 연구하였다.

  • PDF

Plasma Textured Glass Surface Morphologies for Amorphous Silicon Thin Film Solar Cells-A review

  • Hussain, Shahzada Qamar;Balaji, Nagarajan;Kim, Sunbo;Raja, ayapal;Ahn, Shihyun;Park, Hyeongsik;Le, Anh Huy Tuan;Kang, Junyoung;Yi, Junsin;Razaq, Aamir
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.98-103
    • /
    • 2016
  • The surface morphology of the front transparent conductive oxide (TCO) films plays a vital role in amorphous silicon thin film solar cells (a-Si TFSCs) due to their high transparency, conductivity and excellent light scattering properties. Recently, plasma textured glass surface morphologies received much attention for light trapping in a-Si TFSCs. We report various plasma textured glass surface morphologies for the high efficiency of a-Si TFSCs. Plasma textured glass surface morphologies showed high rms roughness, haze ratio with micro- and nano size surface features and are proposed for future high efficiency of a-Si TFSCs.

Characterization of carrier transport and trapping in semiconductor films during plasma processing

  • Nunomura, Shota;Sakata, Isao;Matsubara, Koji
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.391-391
    • /
    • 2016
  • The carrier transport is a key factor that determines the device performances of semiconductor devices such as solar cells and transistors [1]. Particularly, devices composed of in amorphous semiconductors, the transport is often restricted by carrier trapping, associated with various defects. So far, the trapping has been studied for as-grown films at room temperature; however it has not been studied during growth under plasma processing. Here, we demonstrate the detection of trapped carriers in hydrogenated amorphous silicon (a-Si:H) films during plasma processing, and discuss the carrier trapping and defect kinetics. Using an optically pump-probe technique, we detected the trapped carriers (electrons) in an a-Si:H films during growth by a hydrogen diluted silane discharge [2]. A device-grade intrinsic a-Si:H film growing on a glass substrate was illuminated with pump and probe light. The pump induced the photocurrent, whereas the pulsed probe induced an increment in the photocurrent. The photocurrent and its increment were separately measured using a lock-in technique. Because the increment in the photocurrent originates from emission of trapped carriers, and therefore the trapped carrier density was determined from this increment under the assumption of carrier generation and recombination dynamics [2]. We found that the trapped carrier density in device grade intrinsic a-Si:H was the order of 1e17 to 1e18 cm-3. It was highly dependent on the growth conditions, particularly on the growth temperature. At 473K, the trapped carrier density was minimized. Interestingly, the detected trapped carriers were homogeneously distributed in the direction of film growth, and they were decreased once the film growth was terminated by turning off the discharge.

  • PDF

초임계 역상 증발법을 이용한 대두 레시틴 리포좀의 제조 및 특성 (Preparation and Properties of Soybean Lecithin Liposome using Supercritical Reverse Phase Evaporation Method)

  • 이미진;정노희;장부식
    • 한국응용과학기술학회지
    • /
    • 제27권4호
    • /
    • pp.391-398
    • /
    • 2010
  • Soybean lecithin liposomes composed phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl inositol and phosphatidic acid were prepared by using the previously developed supercritical reverse phase evaporation method. The effect of phospholipid composition on the formation of liposomes and physicochemical properties were examined by means of trapping efficiency measurements, transmission electron microscopy, dynamic light scattering and zeta potential measurements. The trapping efficiency of liposomes for D-(+)-glucose made of CNA-Ⅰ which contains approximately 95% phosphatidyl choline is higher than that of CNA-II and CNA-O which contain approximately 32% phosphatidyl choline. However there is no any difference between the trapping efficiency of liposomes for D-(+)-glucose made of CNA-II which has saturated hydrocarbons tails and that of liposomes made of CNA-O which has unsaturated hydrocarbon chains. The electron micrographs of liposomes made of CNA-II and CNA-O show small spherical liposomes with diameter of $0.1\sim0.25{\mu}m$, while that of CNA-I shows large unilamellar liposomes with diameter of $0.2\sim1.2{\mu}m$. These results clearly show that phospholipid structure of phosphatidylcholine allows an efficient preparation of large unilamellar liposomes and a high trapping efficiency for water soluble substances. Liposomes made of CNA-II and CNA-O remained well-dispersed for at least 14 days, while liposome suspension made of CNA-I separated in two phase at 14 days due to aggregation and fusion of liposomes. The dispersibility of liposomes made of CNA-I is lower than that of CNA-II and CNA-O due to the smallar zeta potential of CNA-I.

Hole-Trapping in Iodine-Doped Pentacene Films at Low Temperatures

  • Yun, W.J.;Cho, J.M.;Lee, J.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.70-73
    • /
    • 2006
  • Pentacene films, grown on polyethylene terephthalate (PET) substrates, were doped with Iodine. ESR measurements were made for the films in the temperature range of 100-300 K. Two regimes of doping stages were discernible: a light (intercalation) doping regime and a heavy doping regime. The light doping regime was concluded to be dominated by localized holes that were trapped at low temperatures, which indicated trap states near the valence band edge.

  • PDF

Electroluminescence characteristics of organic light-emitting diodes with TPD doped PVK as the hole transport layer

  • Shin, Y.C.;Song, J.H.;Lee, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1404-1407
    • /
    • 2005
  • We have fabricated organic light-emitting diodes using poly(N-vinylcarbazole)(PVK) doped with N,N'- diphenyl-N,N'-bis(3-methylphenyl)-[l,l'-biphenyl]- 4,4/-diamine (TPD) as the hole transport layer. TPD molecules act as the trapping sites in PVK and reduce the hole mobility, which can enhance the electronhole balance in the emitting layer, resulting in the enhanced device performance. We have found the optimum ratio of TPD to PVK for the EL efficiency.

  • PDF

측면입사광에 대한 SiOx 무반사 회절격자 결합 c-Si PV 서브-모듈의 광전변환효율 향상 (Improvement of Solar Conversion Efficiency in a c-Si PV Sub-Module Integrated with SiOx Anti-Reflection Grating for Oblique Optical Irradiation)

  • 심지현;김제하
    • 한국전기전자재료학회논문지
    • /
    • 제30권5호
    • /
    • pp.325-330
    • /
    • 2017
  • We fabricated 1-D and 2-D diffraction gratings of SiOx anti-reflection (AR) film grown on a quartz substrate and integrated them into a c-Si photovoltaic (PV) submodule. The light-trapping effect of the resulting submodules was studied in terms of the oblique optical incident angle, ${\theta}_i$. As the ${\theta}_i$ increased, solar conversion efficiency, ${\eta}$, was improved as expected by the increased optical transmission caused by the grating. For ${\theta}_i{\leq}30^{\circ}$, the relative solar conversion efficiency, ${\Delta}{\eta}$, of a 1-D SiOx (t=300 nm) grating, compared to that of a flat SiOx AR-coated integrated PV submodule, was improved very little, with a small variation of within 2%, but increased markedly for ${\theta}_i{\geq}40^{\circ}$. We observed a change of ${\Delta}{\eta}$ as large as 10.7% and 9.5% for the SiOx grating of period t=800 nm and 1200 nm, respectively. For a 2-D SiOx (t=300 nm) grating integrated PV submodule, however, the optical trapping behavior was similar in terms of ${\theta}_i$ but its variation was small, within ${\pm}1.0%$.