• Title/Summary/Keyword: light transmission

Search Result 1,222, Processing Time 0.031 seconds

A Indoor Management System using Raspberry Pi (라즈베리 파이를 이용한 실내관리 시스템)

  • Jeong, Soo;Lee, Jong Jin;Jung, Won Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.745-752
    • /
    • 2016
  • In the era of the Internet of Things, where all physical objects are connected to the Internet, we suggest a remote control system using a Raspberry Pi single-board computer with ZigBee, which can turn an indoor light-emitting diode (LED) and a multiple-tap on and off, and with a smart phone can control the brightness of the LED as well as an electronic door lock. By connecting an infrared (IR) transmitter module to the Raspberry Pi, we can control home appliances, such as an air conditioner, and we can also monitor indoor images, indoor temperatures, and illumination by using a smart phone app. We developed a method of finding out IR transmission codes required for remote-controllable appliances with an AVR micro-controller. We suggest a method to remotely open and shut an office door by novating the door lock. The brightness level of an LED (between 0 and 10) can be controlled through a PWM signal generated by an ATmega88 microcontroller. A mutiple-tap is controlled using an ATmega32, a photo-coupler, and a TRIAC. The signals for measured temperature and illumination are converted from analog to digital by using the ATtiny44A microcontroller transmitting to a Raspberry Pi through SPI communication. Then, we connect a camera to the CSI head of the Raspberry Pi. We can turn on the smart multiple-tap for a certain period of time, or we can schedule the multi-tap to turn on at a specific time. To reduce standby power, people usually pull out a power code from multiple-taps or turn off a switch. Our method helps people do the same thing with a smart phone, if they are away from home.

The Development of the Lens of the Optical System for High Concentration Solar PV System (고집광 태양광 발전을 위한 광학시스템 렌즈 개발)

  • Ryu, Kwang-Sun;Cha, Won-Ho;Shin, Goo-Hwan;Cho, Hee-Keun;Kim, Young-Sik;Kang, Seong-Won;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.82-88
    • /
    • 2011
  • The artificial increase in the solar intensity incident on solar cells using lenses or mirrors can allow solar cells to generate equivalent power with a lower cost. There are two types of concentration optics for solar energy conversion. One is to use mirrors, and the other is to use Fresnel lenses. The gains that can be achieved with a Fresnel lens or a parabolic mirror are compared. The result showed the gains are comparable and the two configurations were developed competitively. In application areas of Fresnel lenses as solar concentrators, several variations of design were devised and tested. Some PV systems still use commercially available flat Fresnel lenses as concentrators. A convex linear Fresnel lens to improve the concentration ratio and the efficiency is devised and flat linear Fresnel lens in thermal energy collection is utilized. In this study, we designed and optimized flat Fresnel lens and the 'light pipe' to develop 500X concentrated solar PV system. In the process, we compare the transmission efficiencies according to groove types. We performed rigorous ray tracing simulation of the flat Fresnel lenses. The computer aided simulation showed the 'grooves in case' has the better efficiency than that of 'grooves out case'. Based on the ray-trace results we designed and manufactured sample Fresnel lenses. The optical performance were measured and compared with ray-trace results. Finally, the optical efficiency was measured to be above 75%. All the design and manufacturing were performed based on that InGaP/InGaAs/Ge triple junction solar cell is used to convert the photon energy to electrical power. Field test will be made and analyzed in the near future.

SI-traceable Calibration of a Transmissometer for Meteorological Optical Range (MOR) Observation (기상관측용 투과형 시정계의 국제단위계에 소급하는 교정)

  • Park, Seongchong;Lee, Dong-Hoon;Kim, Yong-Gyoo
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.2
    • /
    • pp.73-82
    • /
    • 2015
  • This work demonstrates the indoor SI-traceable calibration of a transmissometer with a 75-m baseline for the measurement of visibility in MOR (Meteorological Optical Range). The calibration is performed using a set of neutral density (ND) filters (OD 0.1-2.5) and a set of high-transmission quartz glass plates (a bare quartz glass plate and antireflective-coated quartz glass plates), the collection consisting of 20 artifacts in total. The luminous transmittance values of the reference artifacts had been calibrated traceable to the KRISS spectral transmittance scale, which ranges from 0.2 % to 99.5 %. The transmissometer to be calibrated typically consists of a loosely collimated light source based on a white LED (CCT ~5000 K) and a luminous intensity detector with a CIE 1924 V(${\lambda}$) spectral response. As a result of calibration, we obtained the MOR error and its uncertainty for the transmissometer in 20 m - 40 km of MOR. Based on the results, we investigated the applicability of the calibration method and the conformity of the transmissometer to the ICAO's (International Civil Aviation Organization) accuracy requirement for meteorological visibility measurement. We expect that this work will establish the standard procedure for the SI-traceable calibration of a transmissometer.

Preparation and Characterization of Chitosan-coated PLGA Nanoparticle (키토산이 코팅된 PLGA 나노입자의 제조 및 특성)

  • Yu, Su-Gyeong;Nah, Jae-Woon;Jeong, Gyeong-Won
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.509-515
    • /
    • 2021
  • In this study, poly lactic-co-glycolic acid (PLGA) nanoparticles (PNP) were prepared through double (w/o/w) emlusion and emulsifying solvent-evaporation technique using PLGA, which has biocompatibility and biodegradability. To maximize stability and bioavailability of the particles, chitosan-coated PLGA nanoparticles (CPNP) were prepared by charge interaction between PNP and chitosan. We demonstrated that CPNP can be utilized as a drug carrier of oral administration. The chemical structure of CPNP was analyzed by 1H-NMR and FT-IR, and all characteristic peaks appeared, confirming that it was successfully prepared. In addition, particle size and zeta potential of CPNP were analyzed using dynamic light scattering (DLS) while morphological images were obtained using transmission electron microscope (TEM). Thermal decomposition behavior of CPNP was observed through thermogravimetric analysis (TGA). In addition, the cytotoxicity of CPNP was confirmed by MTT assay at HEK293 and L929 cell lines, and it was proved that there is no toxicity confirmed by the cell viability of above 70% at all concentrations. These results suggest that the CPNP developed in this study may be used as an oral drug delivery carrier.

Performance Analysis of Docker Container Migration Using Secure Copy in Mobile Edge Computing (모바일 엣지 컴퓨팅 환경에서 안전 복사를 활용한 도커 컨테이너 마이그레이션 성능 분석)

  • Byeon, Wonjun;Lim, Han-wool;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.901-909
    • /
    • 2021
  • Since mobile devices have limited computational resources, it tends to use the cloud to compute or store data. As real-time becomes more important due to 5G, many studies have been conducted on edge clouds that computes at locations closer to users than central clouds. The farther the user's physical distance from the edge cloud connected to base station is, the slower the network transmits. So applications should be migrated and re-run to nearby edge cloud for smooth service use. We run applications in docker containers, which is independent of the host operating system and has a relatively light images size compared to the virtual machine. Existing migration studies have been experimented by using network simulators. It uses fixed values, so it is different from the results in the real-world environment. In addition, the method of migrating images through shared storage was used, which poses a risk of packet content exposure. In this paper, Containers are migrated with Secure CoPy(SCP) method, a data encryption transmission, by establishing an edge computing environment in a real-world environment. It compares migration time with Network File System, one of the shared storage methods, and analyzes network packets to verify safety.

Optimal Design Method for a Plasmonic Color Filter by Using Individual Phenomenon in a Plasmonic Hybrid Structure (복합 플라즈몬 구조에서의 개별 모드 동작을 이용한 플라즈모닉 컬러 필터 최적의 설계 방법)

  • Lee, Yong Ho;Do, Yun Seon
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.6
    • /
    • pp.275-284
    • /
    • 2018
  • In this study we propose a hybrid color-filter design method in which a nanohole array and a nanodisk array are separated by nanopillars of the material AZ 1500. We propose a design method for an RGB color filter, using the tendency of transmitted light according to each design variable. Especially we analyzed the intensity distribution of the electric field in the cross section, and set the height of the nanopillars so that the local surface-plasmon resonances generated in the two different arrays do not affect each other. The optical characteristics of the optimized color filter are as follows: In the case of the red filter, the ratio of the wavelength band expressing red in the visible broadband is 55.01%, and the maximum transmittance is 41.53%. In the case of the green filter, the ratio of the wavelength band expressing green is 40.20%, and the maximum transmittance is 42.41%. In the case of the blue filter, the ratio of the wavelength band expressing blue is 32.78%, and the maximum transmittance is 30.27%. We expect to improve the characteristics of color filters integrated in industrial devices by this study.

Effects of Multi-layer and TiCl4 Treatment for TiO2 Electrode in Dye-sensitized Solar Cell (염료감응 태양전지의 TiO2 전극의 다중층 및 TiCl4 처리에 따른 효과)

  • Kim, Gyeong-Ok;Kim, Ki-Won;Cho, Kwon-Koo;Ryu, Kwang-Sun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.190-195
    • /
    • 2011
  • To investigate the photon-trapping effect and scattering layer effect of $TiO_2$ multi-layer in dye-sensitized solar cell (DSSC) and the degree of recombination of electrons at the electrode treated $TiCl_4$, we formed electrodes of different conditions and obtained the most optimal electrode conditions. To estimate characteristics of the cell, IV curve, UV-Vis spectrophotometer, electrochemical impedance spectroscopy (EIS) and incident photon-to-current conversion efficiency (IPCE) were measured. As a result, we confirmed that the multi-layer's efficiency was higher than that of monolayer in the IV curve and the performance of $TiCl_4$ treated electrode was increased according to decreasing the impedance of EIS. Among several conditions, the efficiency of the cell with scattering layer is higher than that of a layer with the base electrode about 19%. Because the light scattering layer enhances the efficiency of the transmission wavelength and has long electron transfer path. Therefore, the value of the short circuit current increases approximately 10% and IPCE in the maximum peak also increases about 12%.

Characterization of ginsenoside compound K loaded ionically cross-linked carboxymethyl chitosan-calcium nanoparticles and its cytotoxic potential against prostate cancer cells

  • Zhang, Jianmei;Zhou, Jinyi;Yuan, Qiaoyun;Zhan, Changyi;Shang, Zhi;Gu, Qian;Zhang, Ji;Fu, Guangbo;Hu, Weicheng
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.228-235
    • /
    • 2021
  • Backgroud: Ginsenoside compound K (GK) is a major metabolite of protopanaxadiol-type ginsenosides and has remarkable anticancer activities in vitro and in vivo. This work used an ionic cross-linking method to entrap GK within O-carboxymethyl chitosan (OCMC) nanoparticles (Nps) to form GK-loaded OCMC Nps (GK-OCMC Nps), which enhance the aqueous solubility and stability of GK. Methods: The GK-OCMC Nps were characterized using several physicochemical techniques, including x-ray diffraction, transmission electron microscopy, zeta potential analysis, and particle size analysis via dynamic light scattering. GK was released from GK-OCMC Nps and was conducted using the dialysis bag diffusion method. The effects of GK and GK-OCMC Nps on PC3 cell viability were measured by using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Fluorescent technology based on Cy5.5-labeled probes was used to explore the cellular uptake of GK-OCMC Nps. Results: The GK-OCMC NPs had a suitable particle size and zeta potential; they were spherical with good dispersion. In vitro drug release from GK-OCMC NPs was pH dependent. Moreover, the in vitro cytotoxicity study and cellular uptake assays indicated that the GK-OCMC Nps significantly enhanced the cytotoxicity and cellular uptake of GK toward the PC3 cells. GK-OCMC Nps also significantly promoted the activities of both caspase-3 and caspase-9. Conclusion: GK-OCMC Nps are potential nanocarriers for delivering hydrophobic drugs, thereby enhancing water solubility and permeability and improving the antiproliferative effects of GK.

Deep Learning Acoustic Non-line-of-Sight Object Detection (음향신호를 활용한 딥러닝 기반 비가시 영역 객체 탐지)

  • Ui-Hyeon Shin;Kwangsu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.233-247
    • /
    • 2023
  • Recently, research on detecting objects in hidden spaces beyond the direct line-of-sight of observers has received attention. Most studies use optical equipment that utilizes the directional of light, but sound that has both diffraction and directional is also suitable for non-line-of-sight(NLOS) research. In this paper, we propose a novel method of detecting objects in non-line-of-sight (NLOS) areas using acoustic signals in the audible frequency range. We developed a deep learning model that extracts information from the NLOS area by inputting only acoustic signals and predicts the properties and location of hidden objects. Additionally, for the training and evaluation of the deep learning model, we collected data by varying the signal transmission and reception location for a total of 11 objects. We show that the deep learning model demonstrates outstanding performance in detecting objects in the NLOS area using acoustic signals. We observed that the performance decreases as the distance between the signal collection location and the reflecting wall, and the performance improves through the combination of signals collected from multiple locations. Finally, we propose the optimal conditions for detecting objects in the NLOS area using acoustic signals.

Ginsenoside Rb2 suppresses cellular senescence of human dermal fibroblasts by inducing autophagy

  • Kyeong Eun Yang;Soo-Bin Nam;Minsu Jang;Junsoo Park;Ga-Eun Lee;Yong-Yeon Cho;Byeong-Churl Jang;Cheol-Jung Lee;Jong-Soon Choi
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.337-346
    • /
    • 2023
  • Background: Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods: We performed a senescence-associated β-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results: Rb2 decreased β-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-I to LC3-II and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion: Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.