• Title/Summary/Keyword: light spectra

Search Result 653, Processing Time 0.03 seconds

Growth and Opto-electric Characterization of ZnSe Thin Film by Chemical Bath Deposition (CBD(Chemical Bath Deposition)방법에 의한 ZnSe 박막성장과 광전기적 특성)

  • Hong, K.J.;You, S.H.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.62-70
    • /
    • 2001
  • The ZnSe sample grown by chemical bath deposition (CBD) method were annealed in Ar gas at $45^{\circ}C$. Using extrapolation method of X-ray diffraction pattern, it was found to have zinc blend structure whose lattice parameter $a_o$ was $5.6687\;{\AA}$. From Hall effect, the mobility was likely to be decreased by impurity scattering at temperature range from 10 K to 150 K and by lattice scattering at temperature range from 150 K to 293 K. The band gap given by the transmission edge changed from $2.700{\underline{5}}\;eV$ at 293 K to $2.873{\underline{9}}\;eV$ at 10 K. Comparing photocurrent peak position with transmission edge, we could find that photocurrent peaks due to excition electrons from valence band, ${\Gamma}_8$ and ${\Gamma}_7$ and to conduction band ${\Gamma}_6$ were observed at photocurrent spectrum. From the photocurrent spectra by illumination of polarized light on the ZnSe thin film, we have found that values of spin orbit coupling splitting ${\Delta}so$ is $0.098{\underline{1}}\;eV$. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be $0.061{\underline{2}}\;eV$ and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be $0.017{\underline{2}}\;eV$, $0.031{\underline{0}}\;eV$, respectively.

  • PDF

A Preliminary X-ray Photoelectron Spectroscopic Study on the Manganese Oxidation State of in Polymetallic Nodules of the East Siberian Sea (동시베리아해 망가니즈 단괴의 망가니즈 산화상태 변화 규명을 위한 X선 광전자 분광분석 예비연구)

  • Hyo-Im Kim;Sangmi Lee;Hyo-Jin Koo;Yoon Ji;Hyen-Goo Cho
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.303-312
    • /
    • 2023
  • The determination of the oxidation states of metal elements in manganese nodules sheds light on the understanding of the formation mechanism of nodules, providing insights into the paleo-environmental conditions such as the redox potential of the aqueous system. This study aims to reveal the oxidation states and chemical bonding of manganese in the natural polymetallic nodules, utilizing conventional X-ray photoelectron spectroscopy (XPS). Specifically, shallow manganese nodules from the Siberian Arctic Sea, effectively recording mineralogical variations, were used in this study. Detailed analysis of XPS Mn 2p spectra showed changes in the manganese oxidation state from the center to the outer parts of the nodules. The central part of the nodules showed a higher Mn4+ content, approximately 67.9%, while the outermost part showed about 63% of Mn4+ due to an increase in the Mn3++Mn2+. The decrease in the Mn oxidation state with the growth is consistent with the previously reported mineralogical variations from todorokite to birnessite with growth. Additionally, the O 1s spectra presented a predominance of Mn-O-H bonds in the outer layers compared to the center, suggesting hydration by water in the layered manganates of outer layers. The results of this study demonstrate that XPS can be directly applied to understand changes in paleo-environmental conditions such as the redox states during the growth of manganese nodules. Finally, future studies using high-resolution synchrotron-based XPS experiments could achieve details in oxidation states of manganese and trace metal elements.

Effect of the Crystalline Phase of Al2O3 Nanoparticle on the Luminescence Properties of YAGG:Ce3+ Phosphor under Vacuum UV Excitation (진공자외선 여기에 의한 YAGG:Ce3+ 형광체의 광발광 특성에 미치는 Al2O3 나노입자 원료의 결정상의 영향)

  • Wu, Mi-Hye;Choi, Sung-Ho;Jung, Ha-Kyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.195-201
    • /
    • 2012
  • $Ce^{3+}$-doped yttrium aluminum gallium garnet (YAGG:$Ce^{3+}$), which is a green-emitting phosphor, was synthesized by solid state reaction using ${\alpha}$-phase or ${\gamma}$-phase of nano-sized $Al_2O_3$ as the Al source. The processing conditions and the chemical composition of phosphor for the maximum emission intensity were optimized on the basis of emission intensity under vacuum UV excitation. The optimum heating temperature for phosphor preparation was $1550^{\circ}C$. Photoluminescence properties of the synthesized phosphor were investigated in detail. From the excitation and emission spectra, it was confirmed that the YAGG:$Ce^{3+}$ phosphors effectively absorb the vacuum UV of 120-200 nm and emit green light positioned around 530 nm. The crystalline phase of the alumina nanoparticles affected the particle size and the luminescence property of the synthesized phosphors. Nano-sized ${\gamma}-Al_2O_3$ was more effective for the achievement of higher emission intensity than was nano-sized ${\alpha}-Al_2O_3$. This discrepancy is considered to be because the diffusion of $Al^{3+}$ into $Y_2O_3$ lattice is dependent on the crystalline phase of $Al_2O_3$, which affects the phase transformation of YAGG:$Ce^{3+}$ phosphors. The optimum chemical composition, having the maximum emission intensity, was $(Y_{2.98}Ce_{0.02})(Al_{2.8}Ga_{1.8})O_{11.4}$ prepared with ${\gamma}-Al_2O_3$. On the other hand, the decay time of the YAGG:$Ce^{3+}$ phosphors, irrespective of the crystalline phase of the nano-sized alumina source, was below 1 ms due to the allowed $5d{\rightarrow}4f$ transition of the $Ce^{3+}$ activator.

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF

Study of the Efficiency Droop Phenomena in GaN based LEDs with Different Substrate

  • Yoo, Yang-Seok;Li, Song-Mei;Kim, Je-Hyung;Gong, Su-Hyun;Na, Jong-Ho;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.172-173
    • /
    • 2012
  • Currently GaN based LED is known to show high internal or external efficiency at low current range. However, this LED operation occurs at high current range and in this range, a significant performance degradation known as 'efficiency droop' occurs. Auger process, carrier leakage process, field effect due to lattice mismatch and thermal effects have been discussed as the causes of loss of efficiency, and these phenomena are major hindrance in LED performance. In order to investigate the main effects of efficiency loss and overcome such effects, it is essential to obtain relative proportion of measurements of internal quantum efficiency (IQE) and various radiative and nonradiative recombination processes. Also, it is very important to obtain radiative and non-radiative recombination times in LEDs. In this research, we measured the IQE of InGaN/GaN multiple quantum wells (MQWs) LEDs with PSS and Planar substrate using modified ABC equation, and investigated the physical mechanism behind by analyzing the emission energy, full-width half maximum (FWHM) of the emission spectra, and carrier recombination dynamic by time-resolved electroluminescence (TREL) measurement using pulse current generator. The LED layer structures were grown on a c-plane sapphire substrate and the active region consists of five 30 ${\AA}$ thick In0.15Ga0.85N QWs. The dimension of the fabricated LED chip was $800um{\times}300um$. Fig. 1. is shown external quantum efficiency (EQE) of both samples. Peak efficiency of LED with PSS is 92% and peak efficiency of LED with planar substrate is 82%. We also confirm that droop of PSS sample is slightly larger than planar substrate sample. Fig. 2 is shown that analysis of relation between IQE and decay time with increasing current using TREL method.

  • PDF

Synthesis and Characterization of Homobinuclear Complexes of UO2(VI), ZrO(IV) and Th(IV) ions with 3-Benzylidine/Furfurylidine/(Pyridyl/Thienyl-2'-methylene) imino-5-p-sulphonamido phenyl azo-2-thiohydantoins (3-Benzylidine/Furfurylidine/(Pyridyl/Thienyl-2'-methylene) imino-5-p-sulphonamido phenyl azo-2-thiohydantoins와 UO2(VI), ZrO(IV) 및 Th(IV) 이온의 동종이핵 착물에 대한 합성 및 특성)

  • Dash, D.C.;Mahapatra, A.;Naik, P.;Mohapatra, R.K.;Naik, S.K.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.412-417
    • /
    • 2011
  • A series of homobinuclear complexes of the type [$M_2L(NO_3)_n(H_2O)_m$] where M=$UO_2$(VI), ZrO(IV), Th(IV); L=3-benzylidine-imino-5-p-sulphonamido phenyl azo-2-thiohyatoin(bispt), 3-furfurylidine-imino-5-p-sulphonamido phenyl azo-2-thiohydantoin(fispt),3-pyridyl-2'-methylene-imino-5-p-sulphonamido phenyl azo-2-thiohydantoin(pmispt) and 3-thienyl-2'-methylene-imino-5-p-sulphoanamido phenyl azo-2-thiohydantoin(tmispt); n=8 for Th(IV) and 4 for others, m=4 for bispt and 3 for others have been synthesized and characterized on the basis of elemental analysis, thermal analysis, molar conductance, magnetic moment and spectroscopic data (IR, electronic and $^1H$-NMR). In the light of this information, the ligands can be visualized as tetradentate co-ordinating through azomethine nitrogen, carbonyl oxygen to one metal centre where as azo nitrogen and thioimido nitrogen to the other metal centre yielding homo binuclear complexes of the above composition. The fungi toxicity of the ligands & their zirconyl complexes against some fungal pathogen has been studied.

Synthesis and Application of Bluish-Green BaSi2O2N2:Eu2+ Phosphor for White LEDs (백색 LED용 청록색 BaSi2O2N2:Eu2+ 형광체의 합성 및 응용)

  • Jee, Soon-Duk;Choi, Kang-Sik;Choi, Kyoung-Jae;Kim, Chang-Hae
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.250-254
    • /
    • 2011
  • We have synthesized bluish-green, highly-efficient $BaSi_2O_2N_2:Eu^{2+}$ and $(Ba,Sr)Si_2O_2N_2:Eu^{2+}$ phosphors through a conventional solid state reaction method using metal carbonate, $Si_3N_4$, and $Eu_2O_3$ as raw materials. The X-ray diffraction (XRD) pattern of these phosphors revealed that a $BaSi_2O_2N_2$ single phase was obtained. The excitation and emission spectra showed typical broadband excitation and emission resulting from the 5d to 4f transition of $Eu^{2+}$. These phosphors absorb blue light at around 450 nm and emit bluish-green luminescence, with a peak wavelength at around 495 nm. From the results of an experiment involving Eu concentration quenching, the relative PL intensity was reduced dramatically for Eu = 0.033. A small substitution of Sr in place of Ba increased the relative emission intensity of the phosphor. We prepared several white LEDs through a combination of $BaSi_2O_2N_2:Eu^{2+}$, YAG:$Ce^{3+}$, and silicone resin with a blue InGaN-based LED. In the case of only the YAG:$Ce^{3+}$-converted LED, the color rendering index was 73.4 and the efficiency was 127 lm/W. In contrast, in the YAG:$Ce^{3+}$ and $BaSi_2O_2N_2:Eu^{2+}$-converted LED, two distinct emission bands from InGaN (450 nm) and the two phosphors (475-750 nm) are observed, and combine to give a spectrum that appears white to the naked eye. The range of the color rendering index and the efficiency were 79.7-81.2 and 117-128 lm/W, respectively. The increased values of the color rendering index indicate that the two phosphor-converted LEDs have improved bluish-green emission compared to the YAG:Ce-converted LED. As such, the $BaSi_2O_2N_2:Eu^{2+}$ phosphor is applicable to white high-rendered LEDs for solid state lighting.

Colored coating of SiO2-TiO2-MxOy(M = Cu, Co, Cr) thin films by the sol-gel process (졸-겔법에 의한 SiO2-TiO2-MxOy(M=Cu, CO, Cr)계 박막의 제조 및 색상에 관한 연구)

  • Kim, Sangmoon;Lim, Yongmu;Hwang, Kyuseog
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.3 no.1
    • /
    • pp.229-235
    • /
    • 1998
  • This paper reports the preparation and characterization of colored coatings of $SiO_2-TiO_2-M_xO_y$ (M = Co, Cr or Cu). Films of different compositions ranging from a molar content of transition metals of 5% to 20% have been prepared on soda-lime-silica slide glasses by the sol-gel process. The films have been characterized by a photospectroscopy. The color and reflectance of the films was expressed in Lab color chart and on spectra plot. 'L' as lightness and all reflectance decreased with increase of the content of transition metals. The coating of Co, Cu and Cr cotaining system showed light blue, green and lemon-yellowish color, respectively.

  • PDF

Coating and Characterization of Al2O3-CoO Thin Films by the sol-gel Process (졸-겔법을 이용한 Al2O3-CoO계 박막의 제조와 특성에 관한 연구)

  • Shim, Moonsik;Lim, Yongmu
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.123-128
    • /
    • 1999
  • This paper reports the preparation and characterization of colored coatings of $Al_2O_3$-CoO. Films of 25mol% CoO doped $Al_2O_3$, have been prepared on soda-lime-silica slide glasses by the sol-gel process from Al-alkoxide and Co-nitrate. The films have been characterized by a photospectroscopy and hardness tester. The color, spectral reflectance and spectral transmittance of the films was expressed in Lab color chart and on spectra plot. Microhardness of the films increased with increasing of the heating temperature. Transmittance and reflectance of the films decreased with increase of the heating temperature and coating times. The coating films showed various light-yellow, deep-yellow, greenish-yellow color as a function of the coating times and heating temperature.

  • PDF

Atmospheric correction by Spectral Shape Matching Method (SSMM): Accounting for horizontal inhomogeneity of the atmosphere

  • Shanmugam Palanisamy;Ahn Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.341-343
    • /
    • 2006
  • The current spectral shape matching method (SSMM), developed by Ahn and Shanmugam (2004), relies on the assumption that the path radiance resulting from scattered photons due to air molecules and aerosols and possibly direct-reflected light from the air-sea interface is spatially homogeneous over the sub-scene of interest, enabling the retrieval of water-leaving radiances ($L_w$) from the satellite ocean color image data. This assumption remains valid for the clear atmospheric conditions, but when the distribution of aerosol loadings varies dramatically the above postulation of spatial homogeneity will be violated. In this study, we present the second version of SSMM which will take into account the horizontal variations of aerosol loading in the correction of atmospheric effects in SeaWiFS ocean color image data. The new version includes models for the correction of the effects of aerosols and Raleigh particles and a method fur computation of diffuse transmittance ($t_{os}$) as similar to SeaWiFS. We tested this method over the different optical environments and compared its effectiveness with the results of standard atmospheric correction (SAC) algorithm (Gordon and Wang, 1994) and those from in-situ observations. Findings revealed that the SAC algorithm appeared to distort the spectral shape of water-leaving radiance spectra in suspended sediments (SS) and algal bloom dominated-areas and frequently yielded underestimated or often negative values in the lower green and blue part of the electromagnetic spectrum. Retrieval of water-leaving radiances in coastal waters with very high sediments, for instance = > 8g $m^{-3}$, was not possible with the SAC algorithm. As the current SAC algorithm does not include models for the Asian aerosols, the water-leaving radiances over the aerosol-dominated areas could not be retrieved from the image and large errors often resulted from an inappropriate extrapolation of the estimated aerosol radiance from two IR bands to visible spectrum. In contrast to the above results, the new SSMM enabled accurate retrieval of water-leaving radiances in a various range of turbid waters with SS concentrations from 1 to 100 g $m^{-3}$ that closely matched with those from the in-situ observations. Regardless of the spectral band, the RMS error deviation was minimum of 0.003 and maximum of 0.46, in contrast with those of 0.26 and 0.81, respectively, for SAC algorithm. The new SSMM also remove all aerosol effects excluding areas for which the signal-to-noise ratio is much lower than the water signal.

  • PDF