• Title/Summary/Keyword: light polarization

Search Result 316, Processing Time 0.044 seconds

Research on the Influence of Polarization Aberration on Heterodyne Efficiency in Space Coherent Laser Communication System

  • Zheng, Yang;Piao, Yu
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2022
  • Heterodyne efficiency is an indicator to evaluate the performance of space coherent laser communication systems. It is affected by signal light and local oscillator (LO) light amplitude, phase and polarization state. In this paper, based on the common heterodyne efficiency, a heterodyne efficiency model that can reflect polarization aberration of optical system is proposed. The heterodyne efficiency is analyzed when the signal light and the LO light are linearly polarized or circularly polarized. For a coherent communication optical system, when the incident signal light is right-circularly polarized light and the incident LO light is 45° linear polarized light. Based on the three-dimensional ray tracing theory and the heterodyne efficiency proposed in this paper, the change of polarization states and the distribution of heterodyne efficiency of the signal light and LO light influenced by the optical system's polarization aberration are analyzed. Analysis shows that the heterodyne efficiency model proposed in this paper can be used to evaluate coherent communication systems and reflect the influence of optical system polarization aberration.

A Study on Overcoming Disturbance Light using Polarization Filter and Performance Improvement of Face Recognition System

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Lee, Byeong-cheol;Jang, Jung-hyuk
    • Journal of Multimedia Information System
    • /
    • v.7 no.4
    • /
    • pp.239-248
    • /
    • 2020
  • The performance of the facial recognition system is determined by many technical factors. Further, most of the technical factors have been realized or are still in continued research. The recognition rate has a great influence on performance not only by technical factors but also by other factors. However, researchers are trying to improve the recognition rate by focusing only on technical factors. The mechanism of recognizing is to compare a face image obtained by photography to an already stored face image and determine the score of the similarity. However, if the photographed image is damaged by external light, even a system with a good algorithm will fail to recognize it. Therefore, it is important to prevent the disturbance of light entering from the outside, so it should be blocked, but the camera will not work without light. Thus, it is proposed that a method to secure the external light but block the disturbance of light that affects photography. A method of blocking disturbance light is to use a polarization filter. There are three polarization methods: circular polarization, linear polarization, and elliptical polarization. In this paper, an experiment was performed to overcome disturbance of light using only a circularly polarized filter. In addition, a lighting system that reproduces disturbance light was provided for the experiment, and light of varying intensities and angles was installed to affect the face recognition camera. As a result of actual application, it was determined that a very improved recognition performance in various disturbance light environments.

2D/3D Convertible Integral Imaging Display Using Point Light Source Array Instrumented by Polarization Selective Scattering Film

  • Song, Byoungsub;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.162-167
    • /
    • 2013
  • A two-dimensional (2D) / three-dimensional (3D) convertible display system based on integral imaging is proposed to adopt a novel switchable point light source array, which is implemented using the polarization modulator and the polarization selective scattering film that transmits or scatters the incident light due to its polarization direction. The 2D and the 3D display modes of the proposed system can be modulated by controlling the polarization direction of back light using the polarization modulator. We explain the basic principles of the proposed system and verify the feasibility of the system through preliminary experiments.

Depth-resolved Stokes parameters of light backscattered from turbid media with polarization-sensitive optical coherence tomography system and successive phase-shifting algorithm (위상천이원리 와 PS-OCT시스템을 적용한 역산란광의 매질 깊이별 스톡스변수 추출)

  • Oh, Jung-Taek;Kim, Seung-Woo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.286-287
    • /
    • 2003
  • Polarization-sensitive optical coherence tomography (PS-OCT) was developed to image highly scattering tissues with accounting for polarization effects in the sample. These polarization-sensitive images can provide additional information on the structure of the tissue because of a polarization state of the light is changed at its interaction with biological tissues. The scattering and birefringence are two phenomena, which change the polarization state of light passing through medium. (omitted)

  • PDF

Development of Multi-Purpose Variable Polarization Imaging System for Clinical Diagnosis (임상 진단용 다목적 가변 편광 영상장치 개발)

  • Bae, Young-Woo;Jung, Byung-Jo
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.265-270
    • /
    • 2007
  • Polarization imaging systems have been widely used to selectively characterize skin lesions. Nevertheless, current systems are used in single-mode due to the limitations of a fixed polarization mode and a single-working distance of light source, in which uniform light distribution is achieved on target area. To address such limitations, we developed a variable polarization imaging system based on multi-working distance of light source for various clinical diagnoses. In this study, we characterize the imaging system and present experiment results demonstrating its clinical usefulness. The imaging system consists of a CCD color camera, linear polarization filters, and a single-layered LED ring light source which provides uniform light distribution at multi-working distances. The first polarizer was placed on the light source and the second polarizer placed on objective lens provides continuous linear polarization angle from $0^{\circ}\;to\;90^{\circ}$. The clinical efficacy of the imaging system was investigated by acquiring and analyzing clinical images of skin wrinkle and dental plaque. With the experiments, we verified the potential usefulness of the imaging system for other clinical applications.

Phase change on reflection considered of the polarization in white-light interferometer (백색광 주사 간섭계에서 편광을 고려한 반사시 위상 변화)

  • 김영식;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.276-279
    • /
    • 2003
  • The phase change upon reflection from target surfaces in white-light interferometer induces measurement errors when target surfaces are composed of dissimilar materials. We prove that this phase change on reflection considered of the polarization of the white-light causes the shift of both envelope peak position and fringe peak position of several tens of nanometer. In addition, we propose a new equation of white-light interference fringe pertinent to the polarization of source.

  • PDF

Phase change on reflection in a white-light interferometer as polarization is changes (백색광주사간섭계에서 편광을 고려한 반사시 위상 변화에 대한 연구)

  • 김영식;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.331-336
    • /
    • 2004
  • The phase change due to the reflection from target surfaces in a white-light interferometer induces measurement errors when target surfaces are composed of dissimilar materials. We prove that this phase change on reflection as the polarization of the white-light changes causes a shift of both envelope peak position and fringe peak position of several tens of nanometers as the polarization of the white-light changes. In addition, we propose a new equation for white-light interference fringes depending on the polarization of the source.

Polarization State of Scattered Light in Apertureless Reflection-mode Scanning Near-Field Optical Microscopy

  • Cai, Yongfu;Aoyagi, Mitsuharu;Emoto, Akira;Shioda, Tatsutoshi;Ishibashi, Takayuki
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.317-320
    • /
    • 2013
  • We studied the polarization state in an apertureless scanning near-field microscopy (a-SNOM) operating in reflection mode by using three-dimensional Finite-difference Time-domain (FDTD) method. As a result, the electric field around tip apex in the near-field region enhanced four times stronger than the incident light for ppolarization when the tip-sample separation was 10 nm. We find that the p- and s-polarization state is maintained for the scattered light when the probe is perpendicular to the sample. When the probe is not perpendicular to the sample, the polarization state of scattered light will rotate an angle that equals to the inclination angle of probe with p-polarization illumination. On the other hand, the polarization state will not rotate with s-polarization illumination.

Investigation of the Polarization Cross-Coupling in Fiber Coils Using White Light Michelson Interferometer (백색광 마이켈슨 간섭계를 이용한 광섬유 고리의 편광 교차결합 측정)

  • Jo, Min-Sik;Do, Jae-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.109-115
    • /
    • 2006
  • The investigation of the polarization cross-coupling in fiber coils was made using white light Michelson interferometer. The white light interferometer has a light source of about 13nm spectral bandwidth and measurement resolution of less than -80dB. The measurement found that the 200m fiber coil has a polarization cross-coupling of about -64dB in average and -46dB in maximum.

A Study on the Dielectric Polarization of $ITO/Alq_3/Al$ Structure Organic Light-emitting Diodes ($ITO/Alq_3/Al$ 구조 유기 발광 소자의 유전분극 현상의 연구)

  • Oh, Yong-Cheul;Shin, Cheol-Gi;Kim, Chung-Hyeak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.73-77
    • /
    • 2008
  • We have investigated dielectric polarization in organic light-emitting diodes using 8-hydroxyquinoline aluminum($Alq_3$) as an electron transport and emissive material. We analyzed the dielectric polarization of organic light-emitting diodes using characteristics of impedance and equivalent circuit of $ITO/Alq_3/Al$. Impedance characteristics was measured complex impedance Z and phase ${\theta}$ in the frequency range of $1{\times}40Hz\;to\;1{\times}10^8Hz$. We obtained complex electrical conductivity, dielectric constant, and loss tangent(tan${\delta}$) of the device at room temperature. And, we obtained the equivalent circuit of $ITO/Alq_3/Al$ through analyzing dielectric constant and dielectric loss tangent. From these analyses, we could interpret a conduction mechanism and dielectric polarization.