• Title/Summary/Keyword: light panel

Search Result 643, Processing Time 0.033 seconds

Study on a Forward Light Changes According to the Surface Treatment of Light Cutoff Panel (차광판 표면 처리 방법에 따른 전사광 변화에 관한 연구)

  • Gu, Jinhoi;Kwon, Myunghee;Lee, Yoon-Gyeong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.1-5
    • /
    • 2014
  • Since the "Light Pollution Prevention Act" was executed, the installation of the light cutoff panel to the security lightings which caused light trespass has been increased in the local government. The light cutoff panel is effective in reducing the light trespass in term of the cost-benefit. Because the installation of the light cutoff panel is inexpensive than the change of the security lighting. But the reflected light from the surface of the light cutoff panel has been regarded as another light pollution problem to solve. Therefore, we try to improve light cutoff panel by changing the light reflectivity characteristic of the surface of the light cutoff panel. First, we laminated the surface of light cutoff panel by black powder to reduce the light reflectivity of the light cutoff panel. After the black powder lamination, the light reflectivity on the light cutoff panel improved from 85% to 5%. And we compared reflected light caused by black powder laminated light cutoff panel with the one of no surface treatment cutoff panel. The vertical illuminance was measured at 3, 6, 9m in front of the security lighting and 3, 6, 9, 12, 15, 18m in back of the security lighting to evaluate the reflected light. And the measurement height was determined of 1.5m considering the height of the 1th floor of an apartment house. In this study, we found that the reflected light from the light cutoff panel can be reduced about 90% by the black powder lamination method. The results derived from this study will be helpful to develope the various kind of light cutoff panel which minimize the adverse effect like reflected light of light cutoff panel.

Hysteretic performance of a novel composite wall panel consisted of a light-steel frame and aerated concrete blocks

  • Wang, Xiaoping;Li, Fan;Wan, Liangdong;Li, Tao
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.861-871
    • /
    • 2021
  • This study aims at investigating the hysteretic performance of a novel composite wall panel fabricated by infilling aerated concrete blocks into a novel light-steel frame used for low-rise residential buildings. The novel light-steel frame is consisted of two thin-wall rectangular hollow section columns and a truss-beam assembled using patented U-shape connectors. Two bare light-steel frames and two composite wall panels have been tested to failure under horizontal cyclic loading. Hysteretic curves, lateral resistance and stiffness of four specimens have been investigated and analyzed. Based on the testing results, it is found that the masonry infill can significantly increase the lateral resistance and stiffness of the novel light-steel frame, about 2.3~3 and 21.2~31.5 times, respectively. Failure mode of the light-steel frame is local yielding of the column. For the composite wall panel, firstly, masonry infill is crushed, subsequently, local yielding may occur at the column if loading continues. Hysteretic curve of the composite wall panel obtained is not plump, implying a poor energy dissipation capacity. However, the light-steel frame of the composite wall panel can dissipate more energy after the masonry infill is crushed. Therefore, the composite wall panel has a much higher energy dissipation capacity compared to the bare light-steel frame.

The Measurement and Analysis of Three-Dimensional Light Emitted from Plasma Disp1ay Panel by Optica1 Method (광학적인 방법에 의한 플라즈마 디스플레이 패널의 3차원 광 방출 측정과 분석)

  • Choe, Hun-Yeong;Lee, Seok-Hyeon;Lee, Seung-Geol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.1
    • /
    • pp.31-38
    • /
    • 2002
  • We measured a 3-dimensional images of the light emitted from plasma display panel(PDP) by using newly proposed scanned point detecting system. In the panel without phosphor, as we scan from the rear glass to the front glass, the detected light intensity increases and the light intensity detected in the inside edge of the ITO electrodes shows the stronger intensity than others. The light intensity detected between the barrier ribs shows the largest value of brightness. Also, as the sustain voltage increases, the detected light intensity increases. In the panel with phosphor, the intensity of light detected at barrier rib shows the stronger light intensity than rear plate. Therefore, the phosphor of barrier rib is very important. From these results the 3-dimensional measurement is necessary to understand exactly the discharge phenomenon in the PDP cell.

A study on selecting of Light Cutoff Panel depending on the installation condition using the lighting simulation (조명 시뮬레이션을 이용한 설치 환경별 차광판 선정에 관한 연구)

  • Park, Hyung-Kyu;Gu, Jin-Hoi;Lee, Kyu-Mok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.246-251
    • /
    • 2016
  • The use of security lighting that emits spill light is considered a cause of light trespass problems in the residential areas. Therefore, a cutoff panel was installed as an alternative way to reduce light trespass. On the other hand, it has another problem in that it is less effective and is not good enough for aesthetics and safety. In this study, a light cutoff panel was designed and manufactured to reduce the light trespass, and the structure of a proper light cutoff panel was studied. Using a goniophotometer, the light distribution file (IES file) was extracted and the characteristics of light distribution were analyzed using the RELUX program. The results showed that the reduction of spilt light in the backward direction was decreased significantly for all types of light cutoff panels except the coated globe. In the case of a black powder coated light cutoff panel, the forward light caused by light reflected from the surface of the light cutoff panel was also reduced, which means that the black powder coated light cutoff panel is effective in the performance of light cutoff in the forward and backward directions. In addition, the coated glove increased the spilt light in the forward and backward directions because it reflects the upward light to go down. A 90 % accuracy between the measurement value of light trespass and the expected value of the light trespass was obtained from a simulation.

Laser Marking for Light Guide Panel using Design of Experiment and Construction of Web-based Prototyping System (실험계획법을 이용한 도광판 레이저 마킹 및 웹기반 시스템 구축)

  • Kang H.J.;Kim H.J.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.728-731
    • /
    • 2005
  • A light guide panel (LGP) is an element of the LCD back light unit, which is used for display devices. In this study, a laser marking process is applied to the fabrication of light guide panels as the new fabrication process. In order to obtain a light guide panel which has high luminance and uniformity, four principal parameters such as power, scanning speed, ratio of line gap, and number of line were selected as important factors. A Web-based design tool was developed to generate patterns of light guide panel, and the tool may assist the designer to develop optimized patterns. Topcon-BM7 was used for luminance measurement of each specimen 100mm$\times$100mm area. By Taguchi method optimized levels of each parameters such as 40W of power, 30mm/s of scanning speed, 100:50 ratio of pattern gap, and 90 line of pattern were found by Taguchi method.

  • PDF

Laser Marking for Light Guide Panel using Design of Experiment and Web-based Prototyping System (실험계획법과 웹기반 시스템에 의한 도광판의 레이저 마킹)

  • Kang Hyuk-Jin;Kim Hyung-Jung;Chu Won-Sik;Ahn Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.91-98
    • /
    • 2006
  • A light guide panel (LGP) is an element of the LCD back light unit, which is used for display devices. In this study, the laser marking process is applied to the fabrication of light guide panels as the new fabrication process. In order to obtain a light guide panel which has high luminance and uniformity, four principal parameters such as power, scanning speed, ratio of line gap, and number of line were selected. A Web-based design tool was developed to generate patterns of light guide panel at any location, and the tool may assist the designer to develop optimized patterns. Topcon-BM7 was used for luminance measurement of each specimen with $100mm{\times}100mm$ area. By Taguchi method optimized levels of each parameters were found, and luminance of $3523cd/cm^2$ and uniformity of 92% were achieved using the laser machined BLU.

Laser Marking Process for LCD Light Guide Panel (LCD 백라이트 도광판 제조용 레이저 마킹에 관한 연구)

  • 김경동;백창일;송철기;안성훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.79-84
    • /
    • 2003
  • A light guide panel is an element of the LCD backlight module that is often used for the display of compact electronic devices. In this study, a laser marking system is proposed to fabricate light guide panel, which can replace other manufacturing methods such as silk printing, stamping, or v-cutting methods. The objective of this research is to evaluate the process parameters of the laser marking system. Light guide patterns were marked with a 50W $CO_2$ laser (CW) to understand the effects of average power and scanning speed on the geometry and quality of groove pattern. The width of the fabricated grooves increases with increasing laser power and decreasing scan speed. In order to analyze surface characteristics and optical properties (luminance, uniformity), SEM photography and BM7 (luminance measuring system) were used. As a result, the optimal conditions of the process parameters were determined.

An Experimental Study on the Insulation Property of Light-Weight Foamed Concrete according to Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 단열특성에 관한 실험적 연구)

  • Choi, Hun-Gug;Sun, Joung-Soo;Lee, Jung-Goo;Choi, Duck -Jin;Jeong, Ji-Yong;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.27-30
    • /
    • 2007
  • Recently, use of light-weight panel is increasing in building. Styrofoam sandwich panel is inexpensive and it is excellent in insulation ability and constructability. But styrofoam of panel inside is low ignition point. Consequently, when panel is fired, it is occur in poisonous gas. On the other hand, light-weight foamed concrete is excellent in insulation ability, fire resistance due to inner pore. Properties of light-weight concrete is influenced by foaming agent type. Accordingly, this study investigate in insulation property of according to foaming agent type in order to using light-weight foamed concrete instead of styrofoam. As a results, Non-heating zone temperature of light-weight foamed concrete of using AP, FP are lower than light-weight foamed concrete of using AES. Light-weight foamed concrete of using AES, FP are satisfied with fire performance of two hours at foam ratio 50, 100. Light-weight foamed concrete of using AP is satisfied with fire performance of two hours at AP ratio 0.1, 0.15. Insulation property is better closed pore by made AP, FP than open pore by made AES.

  • PDF

An Experimental Study for the Evaluations of Compressive Performance of Light-Weight Hybrid Wall Panel (경량합성 패널의 압축성능 평가에 관한 실험적 연구)

  • Lee, Sang Sup;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.455-462
    • /
    • 2007
  • The purpose of this paper is to evaluate experimentally the compressive performance of horizontal joints for light-weight hybrid panel in-filled with light-weight foamed mortar. The parameters include the presence of light-weight foamed mortar, the specific gravity of light-weight foamed mortar (0.8, 1.2), the finishing materials (light-weight foamed mortar, Oriented Strand Board [OSB], gypsum board), and the fixed shape of the hybrid panel. As the improved details for fixed end, the peak strength and the stiffness of the light-weight hybrid panel are enhanced as follows: 1.07-2.7 times in peak load, 15-24 times in initial stiffness. The peak strength of the light-weight hybrid panel obtained by the test result is in agreement with the calculations, which is the criterion value according to the domestic code.