• Title/Summary/Keyword: light emitting phenomena

Search Result 22, Processing Time 0.024 seconds

Microcavity Effect of Top-emission Organic Light-emitting Diodes Using Aluminum Cathode and Anode

  • Lee, Chang-Jun;Park, Young-Il;Kwon, Jang-Hyuk;Park, Jong-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1344-1346
    • /
    • 2005
  • We report microcavity effect of top emission organic light-emitting diodes (OLEDs) by using Al cathode and anode, which are feasible for not only top emission EL and angle dependant effects but facile evaporation process without ion sputtering. The device in case of $Alq_3$ green emission showed largely shifted EL maximum wavelength as 650 nm maximum emission. It was also observed that detection angle causes different EL maximum wavelength and different CIE values in R, G, B color emission. As a result, the green device using $Alq_3$ emission showed 650 nm emission ($0^{\circ}$) to 576 nm emission ($90^{\circ}$) as detection angle changed. We believe that these phenomena can be also explained with microcavity effect which depends on the different length of light path caused by detection angle.

Color Tuning of PLED based on Poly(fluorene)s

  • Lee, Jeong-Ik;Do, Lee-Mi;Chu, Hye-Yong;Kim, Sung-Hyun;Zyung, Tae-Hyoung
    • Journal of Information Display
    • /
    • v.6 no.1
    • /
    • pp.33-36
    • /
    • 2005
  • To obtain various colors from the blue emitting poly(fluorene)s, two different approaches are introduced. One is copolymerization with low band gap comonomers and the other is molecular doping with various dyes. As fast and efficient exciton migration and trapping and/or energy transfer between the chromorphoric segments or doped dyes in conjugated polymers can shift the emission to longer wavelengths, these phenomena can be utilized to obtain various colors from the intrinsically blue light emitting poly(fluorene)s.

Photoluminescent and Electroluminescent Characteristics of Thin Films of Terbium Complex with Various Ligand Prepared by Vacuum Evaporation Method (진공 증착법에 의한 다양한 Terbium Complexes 박막의 광학적 및 전기적 특성 연구)

  • 표상우;이명호;이한성;김영관;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.315-318
    • /
    • 1998
  • Organic light-emitting diodes(OLEDs) or electroluminescent devices have attracted much attention because of their possible application as large-area light-emitting displays. Their structure was based on employing a multilayer device structure containing an emitting layer and a carrier transporting layer of suitable organic materials. In this study, several Tb complexes such as Tb(ACAC)$_3$(Phen), Tb(ACAC)$_3$(Phen-Cl) and Tb(TPB)$_3$(Phen) were synthesized and the photoluminescence(PL) and electroluminescence (EL) characteristics of their thin films were investigated by fabricating the devices having a structure of anode/HTL/terbium-oomplex/ETL/cathode, where TPD was used as an hole transporting and Alq$_3$ and TAZ-Si were used as an electron transporting materials. It was found that the photoluminescence(PL) and electroluminescence(EL) characteristics of these terbium complexes were dependent upon the ligands coordinated to terbium metal. Details on the explanation of electrical transport phenomena of the structure with I-V characteristics of the OLEDs using the trapped-charge-limited current(TCLC) model will be discussed.

  • PDF

Temperature Analysis for Optimizing the Configuration of the Linear Cell

  • Choi Jong-Wook;Kim Sung-Cho;Kim Jeong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1089-1097
    • /
    • 2006
  • The market demand of display devices is drastically increasing in the information technology age. The research on OLED (Organic Light Emitting Diodes) display with the luminescence in itself is being more paid attention than LCD (Liquid Crystal display) with the light source from the back. The vapor deposition process is most essential in manufacturing OLED display. The temperature distribution of the linear cell in this process is closely related to securing the uniformity of organic materials on the substrate. This work analyzed the temperature distribution depending on the intervals between the crucible and the heating band as well as on the amount of the heat flux from the heating band. Moreover, the roles of the water jacket and the configuration of the cover within the linear cell were examined through the temperature analysis for six configurations of the linear cell. Under the above temperature analysis, the variations in the intervals and the amount of the heat flux were considered to have an effect on building the uniform temperature distribution within the crucible. It is predicted that the water jacket and the adequate configuration of the cover will prevent the blowout and clogging phenomena, respectively. The results can be used as the fundamental data for designing the optimal linear cell.

Analysis of melt flows and remelting phenomena through numerical simulations during the kyropoulos sapphire single crystal growth (전산해석을 통한 키로플러스 사파이어 단결정 성장공정의 유동 및 remelting 현상 분석)

  • Kim, Jin Hyung;Park, Yong Ho;Lee, Young Cheol
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.129-134
    • /
    • 2013
  • Sapphire wafers are used as an important substrate for the production of blue LED (light emitting diode) and the LED's performance largely depends on the quality of the sapphire single crystals. There are several crystal growth methods for sapphire crystals and Kyropoulos method is an efficient way to grow large diameter and high-quality sapphire single crystals with low dislocation density. During Kyropoulos growth, the convection of molten melt is largely influenced by the hot zone geometry such as crucible shape, heater and refractory arrangements. In this study, CFD (computational fluid dynamics) simulations were performed according to the bottom/side ratios (per unit of the crucible surface area) of heaters. And, based on the results of analysis, the molten alumina flows and remelting phenomena were analyzed.

Photo-Induced Memory of an OLED in the presence of thio-Michler's ketone

  • Enokida, Toshio;Gwon, Tae-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.281-284
    • /
    • 2004
  • Photo-induced memory effect of an organic light-emitting diode(OLED) composed of a hydrazone-derivative(DBAH) dispersed in bis-phenol-A type polycarbonate polymer(PCA) in the presence of thio-Michler's ketone, was investigated by the measuring of the current density and luminance at the various conditions. After the light exposure, the current of the OLED was decreased approximately one order, and the luminance of the OLED also decresed. This memory effct was erasable by heating the OLED to the temperature higher than the glass transition temperature(Tg). As shown in this result, we found the memory effect was erased by heating and returned to its original state in the hole injecting layer(HIL) of the OLED. A series of these phenomena was suggested the possibility of the application to the imaging plate.

  • PDF

NUMERICAL ANALYSIS FOR CONDUCTION HEAT TRANSFER AND APPRAISAL OF PERFORMANCE INDICES IN LED MONITOR FOR LAPTOP COMPUTER (노트북 LED 영상장치 내부의 전도열전달 해석과 성능 지수 평가)

  • Park, I.S.;Sohn, C.H.;Son, D.H.;Baik, S.M.;Park, C.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.47-51
    • /
    • 2011
  • Dark Mura phenomena which can happen at the region with high temperature gradient in a Notebook LCD Monitor using LED light source has numerically been studied. The calculation was conducted under the nearly realistic conditions by considering the anisotropic thermal properties of materials and the real dimensions of each component. The two performance indices of LED monitor, i.e., the maximum temperature and the spacial gradient of temperature were examined for the various shapes, lengths and thickness of heat sink plate. Calculated results give more reasonable temperature distribution comparing with experimental results.

Effect of the Microtip Length in a Slot-die Head on Fine Stripe Coatings (미세 스트라이프 코팅에 미치는 슬롯 다이 헤드 마이크로 팁 길이의 영향)

  • Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.69-74
    • /
    • 2019
  • The aim of this work is to investigate the effect of the microtip length in a slot-die head on coating of a fine poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) stripe. To this end, we have employed a meniscus guide with a 150-㎛-wide microtip and performed roll-to-roll slot-die coatings by varying its length between 500 ㎛ and 50 ㎛. When the microtip length is 150 ㎛ or shorter, we have observed three unexpected phenomena; 1) though the solution spreads much wider than the microtip width, yet the coated stripe width is almost the same as the microtip width, 2) the stripe width decreases, but the stripe thickness is rather increased with increasing coating speed at a fixed flow rate, 3) we obtain stripes much narrower than the microtip width at high coating speeds. It is due to the fact that 1) the meniscus is not well controlled by a short microtip, 2) the main stream of solution from the outlet is very close to the substrate and thus the distributed solution along the head lip merges with the main stream, and 3) the solution is not spread over the entire microtip end at high coating speeds, causing a tiny wobble in the meniscus. Using the 150-㎛-wide and 250-㎛-long microtip, we have fabricated 153-㎛-wide and 94-nm-thick PEDOT:PSS stripe at the maximum coating speed of 13 mm/s. To demonstrate its applicability in solution-processable organic light-emitting diodes (OLEDs), we have also fabricated an OLED device with the fine PEDOT:PSS stripe and obtained strong light emission from it.

An Analysis of Design Elements of Silicon Avalanche LED (실리콘 애벌런치 LED의 설계요소에 대한 분석)

  • Ea, Jung-Yang
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.116-126
    • /
    • 2009
  • It is becoming more difficult to improve the device operating speed by shrinking the size of semiconductor devices. Therefore, for a new leap forward in the semiconductor industry, the advent of silicon opto-electronic devices, i.e., silicon photonics is more desperate. Silicon Avalanche LED is one of the prospective candidates to realize the practical silicon opto-electronic devices due to its simplicity of fabrication, repeatability, stability, high speed operation, and compatibility with silicon IC processing. We conducted the measurement of the electrical characteristics and the observation of the light-emitting phenomena using optical microscopy. We analyzed the influence of the design elements such as the shape of the light-emitting area and the depth of the $n^{+}-p^{+}$ junction with simple device modeling and simulation. We compared the results of simulation and the measurement and explained the discrepancy between the results of the simulation and the measurement, and the suggestions for the improvement were given.

An Integrated System for Radioluminescence, Thermoluminescence and Optically Stimulated Luminescence Measurements

  • Park, Chang-Young;Park, Young-Kook;Chung, Ki-Soo;Lee, Jong-Duk;Lee, Jungil;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.160-169
    • /
    • 2018
  • Background: This study aims to develop an integrated optical system that can simultaneously or selectively measure the signals obtained from radioluminescence (RL), thermoluminescence (TL), and optically stimulated luminescence (OSL), which are luminescence phenomena of materials stimulated by radioactivity, heat, and light, respectively. The luminescence mechanism of various materials could be investigated using the glow curves of the luminescence materials. Materials and Methods: RL/TL/OSL integrated measuring system was equipped with a X-ray tube (50 kV, $200{\mu}A$) as an ionizing radiation source to irradiate the sample. The sample substrate was used as a heating source and was also designed to optically stimulate the sample material using various light sources, such as high luminous blue light emitting diode (LED) or laser. The system measured the luminescence intensity versus the amount of irradiation/stimulation on the sample for the purpose of measuring RL, TL and OSL sequentially or by selectively combining them. Optical filters were combined to minimize the interference of the stimulation light in the OSL signal. A long-pass filter (420 nm) was used for 470 nm LED, an ultraviolet-pass filter (260-390 nm) was used for detecting the luminescence of the sample by PM tube. Results and Discussion: The reliability of the system was evaluated using the RL/OSL characteristics of $Al_2O_3:C$ and the RL/TL characteristics of LiF:Mg,Cu,Si, which were used as dosimetry materials. The RL/OSL characteristics of $Al_2O_3:C$ showed relatively linear dose-response characteristics. The glow curve of LiF:Mg,Cu,Si also showed typical RL/OSL characteristics. Conclusion: The reliability of the proposed system was verified by sequentially measuring the RL characteristics of radiation as well as the TL and OSL characteristics by concurrent thermal and optical stimulations. In this study, we developed an integrated measurement system that measures the glow curves of RL/TL/OSL using universal USB-DAQs and the control program.