• Title/Summary/Keyword: light condition

Search Result 2,484, Processing Time 0.033 seconds

Effects of Light on the Pigment Production and Chloroplast Development of Ginseng Hairy Roots (인삼 모상근의 색소 생성 및 엽록체 발달에 미치는 광의 효과)

  • 양덕조;최혜연
    • Journal of Ginseng Research
    • /
    • v.21 no.1
    • /
    • pp.28-34
    • /
    • 1997
  • The effects of light on the pigment production and chloroplast development were examined on ginseng hairy roots cultured in 1/2MS liquid medium. The chlorophyll and carotenoid production were increased from 1,000 to 3,500 lux condition, but decreased drastically in 7,000 lux condition. The anthocyanin production was significantly increased with increment light intensity(1,000∼7,000 lux). The thylakoid membrane of chloroplast was proplastid in dark condition and it began to develop into thylakoid membrane in 1,000 lux condition and then intact thylakoid membrane was developed in 3,500 lux condition. However, the development of thylakoid membrane in 7,000 lux condition was inhibited comparing to 3,500 lux condition. The total chlorophyll production in blue light condition were high comparing to other wavelength and same as 40% of total chlorophyll on white light(3,500 lux) condition. The chlorophyll and carotenoid production by sucrose concentration were high in 3% sucrose condition and anthocyanin production was high in 4% condition. The production of chlorophyll and carotenoid by light periods was high when explants were cultured in dark condition for 1 week and then transferred to light condition for 4 weeks. Our results suggest that pigment production and chloroplast development could be accelerated by light Intensity of specific wavelength in cultures of ginseng hairy root.

  • PDF

Relevance of Light Spectra to Growth of the Rearing Tiger Puffer Takifugu rubripes

  • Kim, Byeong-Hoon;Hur, Sung-Pyo;Hur, Sang-Woo;Lee, Chi-Hoon;Lee, Young-Don
    • Development and Reproduction
    • /
    • v.20 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • In fish, light (photoperiod, intensity and spectra) is main regulator in many physiological actions including growth. We investigate the effect of light spectra on the somatic growth and growth-related gene expression in the rearing tiger puffer. Fish was reared under different light spectra (blue, green and red) for 8 weeks. Fish body weight and total length were promoted when reared under green light condition than red light condition. Expression of somatostatins (ss1 and ss2) in brain were showed higher expression under red light condition than green light condition. The ss3 mRNA was observed only higher expression in blue light condition. Expression of growth hormone (gh) in pituitary was detected no different levels between experimental groups. However, the fish of green light condition group was showed more high weight gain and feed efficiency than other light condition groups. Our present results suggest that somatic growth of tiger puffer is induced under green light condition because of inhibiting ss mRNA expression in brain by effect of green wavelength.

Growth and Ginsenosides Production of Hairy Root (Panax ginseng C.A. Meyer) via Light Energy (인삼 모상근의 성장 및 Ginsenosides 생성에 미치는 광의 효과)

  • 양덕조;최혜연
    • Journal of Ginseng Research
    • /
    • v.20 no.3
    • /
    • pp.318-324
    • /
    • 1996
  • The effects of light on the growth and ginsenosides production were examined in the hairy roots of Panax ginsen C.A. Meyer induced by Agrobacterium rhizogines A4. The 9rowth of ginseng hairy roots in 1/2MS liquid medium was significantly decreased with an increment of light intensity (1,000~7,000 lux). The growth of hairy roots under 7,000 lux condition was decreased at 17% compared to the dark condition. The production of 7 ginsenosides in hairy root was very high in 3,500 lux condition. The production of ginsenoside-Rg, and Rf increased 3.3 and, 2.4 times respectively as compared to dark condition. The growth of hairy roots was inhibited by blue light, while ginsenosides production was increased. The sucrose demands of hairy roots was examined in light condition(3,500 lux). The growth of hairy roots in 1/2MS liquid medium with various sucrose concentrations(1~4%) was high in IVp sucrose, while ginsenosides production was high in 3% sucrose condition. The growth and ginsenosides production were high when hairy roots were cultured in dark condition for 1 week and then transferred to light condition(3,500 lux) for 4 weeks. It is suggested that ginsenosides production could be accelerated by light intensity of specific wavelength in cultures of ginseng hairy roots.

  • PDF

Effects of light and nutrient on flower formation and vegetative growth of Viola collina

  • Park, Hyekyung;Son, Ga-yeon;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.243-249
    • /
    • 2022
  • Background: Mixed breeding herb Viola collina Besser, which produces both chasmogamous and cleistogamous flower, has limited habitats under closed canopy and short and early flowering timing, making it relatively more vulnerable to climate change. To better understand the effect of light and nutrient on the flower formation and vegetative growth of V. collina, a mesocosm experiment was conducted. Two-by-two factorial treatments of two light conditions (100% and 60% of natural light) and two fertilizer treatment conditions (fertilized and not fertilized) were applied in the mesocosm experiment. Results: The number of flowers, including chamogamous and cleistogamous flowers, was highest (5.65/pot) under 60% light and fertilized condition and lowest (1.41/pot) under 100% light and not-fertilized condition. However, above ground vegetative growth was highest (2.89 g/pot) under 100% light and fertilized condition and lowest (2.38 g/pot) under 60% light and not-fertilized condition. Above ground biomass to belowground biomass ratio was highest (1.50) under 60% light and fertilized condition and lowest (1.26) under 100% light and fertilized condition. Conclusions: This study showed that high light and nutrient are responsible for the vegetative growth, though the effect of fertilizer was reduced due to allocation and retainment of nutrients. In addition, the low light is necessary to make flowers, especially chasmogamous flowers.

Mercury-Induced Light-Dependent Alterations of Chlorophyll a Fluorescence Kinetics in Barley Leaves

  • Lee, Choon-Hwan
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.11-18
    • /
    • 1995
  • Mercury-induced changes in Chl a fluorescence induction kinetics of scratched barley leaf segments were dependent on the presence of light. By the treatment of 50$\mu$M HgCl2 under light condition, Fm and Fp were decreased. However, they were not significantly reduced under dark condition even after 2 h of mercury treatment. Under dark condition the decrease in variable fluorescence (Fv) after P transient was blocked within 20 min of the treatment. The analysis of fast fluorescence rise curve suggests that the inhibitory site of mercury under both light and dark conditions is not at QB binding site and the inhibition does not involve the increase in inactive PSII centers. Under light condition the decrease in Fp was partially recovered by addition of 50 $\mu$M NH2OH. These results suggest that a major inhibitory site of mercury under dark condition is at the reducing side of PSII and the site under light condition is at the oxidizing side of PSII possibly in addition to the one under dark condition. Under both light and dark conditions, energy-dependent quenching(qE) was alomost completely repressed within 20 min of mercury treatment and noticible change in Fo was not observed. The qE repression is probably due to the blockage of transthylakoid ΔpH formation.

  • PDF

Effect of Light, Temperature, and Shaking Speed on Production of Capsaicin in Suspension-Cultured Jalapeno Pepper (Capsicum annuum L.)

  • Lee, Kwon-Bok;Engler, Cady;Yang, Jae E.;Lee, Shin-Woo;Park, Yong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.84-86
    • /
    • 2001
  • Capsaicin synthesis by suspension cultured cells of Jalapeno pepper (Capcicum annuum L.) was assessed in vitro under various conditions including temperature (23 and $30^{\circ}C$), light intensity (with light and without light), and shaking speed (110 and 200 rpm). Capsaicin production increased, while the cell biomass growth decreased possibly due to the production of a secondary metabolite. Capsaicin synthesis was primarily affected by light condition. Cells cultivated at 110 rpm and $23^{\circ}C$ under light condition yielded the highest fresh weight, while those cultivated under the same condition, but without light resulted in the lowest cell mass. Capsaicin content in cells of 18-day-old pepper grown at 110 rpm and $23^{\circ}C$ under light was 0.125% of the cell mass. However, without light treatment, the capsaicin content in cells at the same shaking speed and temperature increased up to 169%, indicating no light is favored in the capsaicin synthesis by Jalapeno pepper. Increasing the shaking speed from 110 to 200 rpm without light enhanced the capsaicin synthesis. Results of this study demonstrate that light condition is the limiting factor in the synthesis of capsaicin in tissue-cultured Jalapeno pepper cells.

  • PDF

Power Supply for USN by Using SMD Type Solar Cell Array (SMD 타입 태양전지 어레이를 이용한 USN용 전원 공급 장치)

  • Kim, Seong-Il
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.22-25
    • /
    • 2009
  • For increasing the output voltage, six SMD(surface mount device) type AlGaAs/GaAs solar cells were connected in series. The electrical properties of the array were measured and compared with one sun (100 mW/$cm^2$) and indoor light (480 lux) conditions. Under one sun condition, output power was 21.57 mW and it was $14.67\;{\mu}W$ under indoor light condition. Under the indoor light condition, the intensity of the light is very low compared to one sun condition. Thus the Voc(open circuit voltage) and Isc (short circuit current) of the sample under indoor light condition decreased very much compared to that of under the one sun condition. This kind of solar cell power supply can be used as a power source for ubiquitous sensor network (USN).

  • PDF

A Study of Decreasing Noise and Vibration for a Light Rail Transit (경량철도 소음.진동의 저감 대책에 관한 연구)

  • Kim, Dong-Gi;Park, Jong-Bok;Park, Kwang-Hyun;Rha, Sang-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.53-56
    • /
    • 2004
  • A light rail transit would be one of effective means to solve a traffic problem of the city. Noise and vibration originated from light railway, however, would be another problem. This study focuses on the method of decreasing noise and vibration for a light railway, and comprises track condition, driving condition, linear condition, vehicle condition and civil engineering structure condition. For decreasing noise and vibration in an track, long rail laying and low vibration track laying would be good methods. The result of this study proves that improving the track wold be the most economical and valid method for decreasing noise and vibration for light railway.

  • PDF

Effect of Light Source on Organic Acid, Sugar, and Flavonoid Concentrations in Buckwheat

  • Kim, Sun-Lim;Lee, Han-Bum;Park, Cheol-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.1
    • /
    • pp.42-47
    • /
    • 2002
  • The major free sugars of buckwheat plants were fructose, glucose, and maltose but their contents and compositions were influenced by the different wavelength of light. Free sugar contents of Clfa 39 (Fagopyrum tataricum) were higher than those of Yangjul-maemil (Fagopyrum esculentum) regardless of the light sources. As treated with red and blue light, the free sugar contents in the leaves of buckwheat plants were slightly increased, but their contents in the stems and flowers were lower than those of natural light condition. Under the natural light condition, maltose was detected in every tissues of buckwheat plants, but as treated with blue and red light, it was not detected in the flowers of buckwheat plants. Citric, malic and acetic acid were detected as major organic acids in buckwheat plants. Red and blue lights decreased the total organic acid contents in buckwheat plants as compared with natural light condition. It was considered that blue light are less active than red light for the accumulation of organic acids. Tataric acid was detected only in the leaves of buckwheat plants, however, as treated with red and blue light, it was not detected in the leaves of Clfa 39. Flowers of Yangjul-maemil contained a considerable amount of rutin and quercitrin. Only small amount of quercitrin was detected in leaves, but it was not detected in stems. On the other hand, Clfa 39 leaves contained a considerable amount of rutin, quercetin and small amount of quercitrin, but quercitrin and quercetin were detected only in the stems of Clfa 39. Red and blue lights significantly decreased the contents of rutin, quercitrin, and quercetin in buckwheat plants as comparing with natural light condition. Rutin content in the flowers of Clfa 39 was increased under the red and blue light conditions.

Gene Expression Analysis of Zeaxanthin Epoxidase from the Marine Microalga Dunaliella tertiolecta in Response to Light/Dark Cycle and Salinity

  • Kim, Minjae;Kang, Yongsoo;Jin, EonSeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1453-1459
    • /
    • 2019
  • Zeaxanthin is an important pigment in the photo-protection mechanism of microalgae. However, zeaxanthin epoxidase, an enzyme involved in the accumulation and conversion of zeaxanthin, has not been extensively studied in microalgae. In this work, we report the expression pattern of zeaxanthin epoxidase in Dunaliella tertiolecta (DtZEP) at different light and diverse salinity conditions. To confirm the responsiveness to light conditions, the ZEP expression pattern was investigated in photoperiodic (16 h of light and 8 h of dark) and continuous (24 h of light and 0 h of dark) light conditions. mRNA expression levels in photoperiodic conditions fluctuated along with the light/dark cycle, whereas those in continuous light remained unchanged. In varying salinity conditions, the highest mRNA and protein levels were detected in cells cultured in 1.5 M NaCl, and ZEP expression levels in cells shifted from 0.6 M NaCl to 1.5 M NaCl increased gradually. These results show that mRNA expression of DtZEP responds rapidly to the light/dark cycle or increased salinity, whereas changes in protein synthesis do not occur within a short period. Taken together, we show that DtZEP gene expression responds rapidly to light irradiation and hyperosmotic stress. In addition, ZEP expression patterns in light or salinity conditions are similar to those of higher plants, even though the habitat of D. tertiolecta is different.