• Title/Summary/Keyword: light algorithm

Search Result 1,106, Processing Time 0.025 seconds

Implementation and Validation of Traffic Light Recognition Algorithm for Low-speed Special Purpose Vehicles in an Urban Autonomous Environment (저속 특장차의 도심 자율주행을 위한 신호등 인지 알고리즘 적용 및 검증)

  • Wonsub, Yun;Jongtak, Kim;Myeonggyu, Lee;Wongun, Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.6-15
    • /
    • 2022
  • In this study, a traffic light recognition algorithm was implemented and validated for low-speed special purpose vehicles in an urban environment. Real-time image data using a camera and YOLO algorithm were applied. Two methods were presented to increase the accuracy of the traffic light recognition algorithm, and it was confirmed that the second method had the higher accuracy according to the traffic light type. In addition, it was confirmed that the optimal YOLO algorithm was YOLO v5m, which has over 98% mAP values and higher efficiency. In the future, it is thought that the traffic light recognition algorithm can be used as a dual system to secure the platform safety in the traffic information error of C-ITS.

Image Search Method Based on Bresenham Raster Algorithm for Omnidirectional Structured Light Image (전방향 구조광 영상을 위한 Bresenham 래스터 알고리즘 기반 영상 탐색 방법)

  • Shin, Jin;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.145-148
    • /
    • 2011
  • In this paper, we proposed a search method for structured light pixels of omnidirectional structured light image. Since the omnidirectional structured light image is composed of several circular arc segments, the proposed algorithm searches the structured light pixels in radial direction rather than horizontal or vertical directions. The proposed search algorithm is based on the well-known Bresenham raster algorithm for line drawing in discrete integer space, thereby computation of the algorithm is very efficient. Comparison results between the proposed search algorithm and the conventional horizontal search are presented in experiments.

Real-time Reflection Light Detection Algorithm using Pixel Clustering Data (Pixel 군집화 Data를 이용한 실시간 반사광 검출 알고리즘)

  • Hwang, Dokyung;An, Jongwoo;Kang, Hosun;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.301-310
    • /
    • 2019
  • A new algorithm has been propose to detect the reflected light region as disturbances in a real-time vision system. There have been several attempts to detect existing reflected light region. The conventional mathematical approach requires a lot of complex processes so that it is not suitable for a real-time vision system. On the other hand, when a simple detection process has been applied, the reflected light region can not be detected accurately. Therefore, in order to detect reflected light region for a real-time vision system, the detection process requires a new algorithm that is as simple and accurate as possible. In order to extract the reflected light, the proposed algorithm has been adopted several filter equations and clustering processes in the HSI (Hue Saturation Intensity) color space. Also the proposed algorithm used the pre-defined reflected light data generated through the clustering processes to make the algorithm simple. To demonstrate the effectiveness of the proposed algorithm, several images with the reflected region have been used and the reflected regions are detected successfully.

Investigating the performance of different decomposition methods in rainfall prediction from LightGBM algorithm

  • Narimani, Roya;Jun, Changhyun;Nezhad, Somayeh Moghimi;Parisouj, Peiman
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.150-150
    • /
    • 2022
  • This study investigates the roles of decomposition methods on high accuracy in daily rainfall prediction from light gradient boosting machine (LightGBM) algorithm. Here, empirical mode decomposition (EMD) and singular spectrum analysis (SSA) methods were considered to decompose and reconstruct input time series into trend terms, fluctuating terms, and noise components. The decomposed time series from EMD and SSA methods were used as input data for LightGBM algorithm in two hybrid models, including empirical mode-based light gradient boosting machine (EMDGBM) and singular spectrum analysis-based light gradient boosting machine (SSAGBM), respectively. A total of four parameters (i.e., temperature, humidity, wind speed, and rainfall) at a daily scale from 2003 to 2017 is used as input data for daily rainfall prediction. As results from statistical performance indicators, it indicates that the SSAGBM model shows a better performance than the EMDGBM model and the original LightGBM algorithm with no decomposition methods. It represents that the accuracy of LightGBM algorithm in rainfall prediction was improved with the SSA method when using multivariate dataset.

  • PDF

An Improved ViBe Algorithm of Moving Target Extraction for Night Infrared Surveillance Video

  • Feng, Zhiqiang;Wang, Xiaogang;Yang, Zhongfan;Guo, Shaojie;Xiong, Xingzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4292-4307
    • /
    • 2021
  • For the research field of night infrared surveillance video, the target imaging in the video is easily affected by the light due to the characteristics of the active infrared camera and the classical ViBe algorithm has some problems for moving target extraction because of background misjudgment, noise interference, ghost shadow and so on. Therefore, an improved ViBe algorithm (I-ViBe) for moving target extraction in night infrared surveillance video is proposed in this paper. Firstly, the video frames are sampled and judged by the degree of light influence, and the video frame is divided into three situations: no light change, small light change, and severe light change. Secondly, the ViBe algorithm is extracted the moving target when there is no light change. The segmentation factor of the ViBe algorithm is adaptively changed to reduce the impact of the light on the ViBe algorithm when the light change is small. The moving target is extracted using the region growing algorithm improved by the image entropy in the differential image of the current frame and the background model when the illumination changes drastically. Based on the results of the simulation, the I-ViBe algorithm proposed has better robustness to the influence of illumination. When extracting moving targets at night the I-ViBe algorithm can make target extraction more accurate and provide more effective data for further night behavior recognition and target tracking.

Detection and Recognition of Traffic Lights for Unmanned Autonomous Driving (무인 자율주행을 위한 신호등의 검출과 인식)

  • Kim, Jang-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.751-756
    • /
    • 2018
  • This research extracted traffic light from input video, recognized colors of traffic light, and suggested traffic light color recognizing algorithm applicable to manless autonomous vehicle or ITS by distinguishing signs. To extract traffic light, suggested algorithm extracted the outline with CEA(Canny Edge Algorithm), and applied HCT(Hough Circle Transform) to recognize colors of traffic light and improve the accuracy. The suggested method was applied to the video of stream acquired on the road. As a result, excellent rate of traffic light recognition was confirmed. Especially, ROI including traffic light in input video was distinguished and computing time could be reduced. In even area similar to traffic light, circle was not extracted or V value is low in HSV space, so it's failed in candidate area. So, accuracy of recognition rate could be improved.

Absolute Temperature Measurement using White Light Interferometry

  • Kim, Jeong-Gon
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.89-93
    • /
    • 2000
  • Recently a new signal processing algorithm for white light interferometry was presented. In this paper, the proposed signal processing algorithm was applied for absolute temperature measurement using white light interferometry. Stability testing and absolute temperature measurement were demonstrated. Stability test demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe. The test also showed that the absolute temperature measurement system using white light interferometry is capable of obtaining the theoretical minimum detectable change (0.0005 fringe), which is consistent with the performance predicted by the proposed signal processing algorithm.

Motion Area Detection Algorithm based on Irregularity of Light (빛의 불규칙성을 기반으로 한 동작영역 검출 알고리즘)

  • Kim, Chang-Min;Lee, Kyu-Woong
    • Journal of KIISE
    • /
    • v.44 no.10
    • /
    • pp.1094-1104
    • /
    • 2017
  • In this paper, a motion image is detected based on the irregularity of lights. This motion image is extracted by modifying the reflected light region of the 3 way-diff algorithms. 3 way-diff algorithm extracts reflected light region using the 3-successive image. In this algorithm, The reflected light region is a region generated by light in the image production process and is finally created around all objects. The algorithm shows a process to extracting the region. This process is a simple operation, but doesn't have a defined formula for light. This paper judges that the reflected light region is a kind of noise at the 3 way-diff algorithms and defines the formula for extracting the reflected light region. It shows that compared with the proposed algorithm and existing algorithm through experiment.

Real Time Traffic Signal Recognition Using HSI and YCbCr Color Models and Adaboost Algorithm (HSI/YCbCr 색상모델과 에이다부스트 알고리즘을 이용한 실시간 교통신호 인식)

  • Park, Sanghoon;Lee, Joonwoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.214-224
    • /
    • 2016
  • This paper proposes an algorithm to effectively detect the traffic lights and recognize the traffic signals using a monocular camera mounted on the front windshield glass of a vehicle in day time. The algorithm consists of three main parts. The first part is to generate the candidates of a traffic light. After conversion of RGB color model into HSI and YCbCr color spaces, the regions considered as a traffic light are detected. For these regions, edge processing is applied to extract the borders of the traffic light. The second part is to divide the candidates into traffic lights and non-traffic lights using Haar-like features and Adaboost algorithm. The third part is to recognize the signals of the traffic light using a template matching. Experimental results show that the proposed algorithm successfully detects the traffic lights and recognizes the traffic signals in real time in a variety of environments.

Retinex Algorithm Improvement for Color Compensation in Back-Light Image Efficently (역광 이미지의 효율적인 컬러 색상 보정을 위한 Retinex 알고리즘의 성능 개선)

  • Kim, Young-Tak;Yu, Jae-Hyoung;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • This paper proposes a new algorithm that improve color component of compensated image using Retinex method for back-light image. A back-light image has two regions, one of the region is too bright and the other one is too dark. If an back-light image is improved contrast using Retinex method, it loses color information in the part of brightness of the image. In order to make up loss information, proposed algorithm adds color components from original image. The histogram can be divided three parts that brightness, darkness, midway using K-mean (k=3) algorithm. For the brightness, it is used color information of the original image. For the darkness, it is converted using by Retinex method. The midway region is mixed between original image and Retinex result image in the ratio of histogram. The ratio is determined by distance from dark area. The proposed algorithm was tested on nature back-light images to evaluate performance, and the experimental result shows that proposed algorithm is more robust than original Retinex algorithm.