• Title/Summary/Keyword: ligands

Search Result 1,118, Processing Time 0.032 seconds

Synthesis and Properties of Polydentate Schiff Base Ligands having $N_nO_2$ (n=3~5) Donor Atoms and their Transition Metal Complexes (여러자리 질소-산소계 시프염기 리간드와 전이금속착물의 합성 및 특성)

  • Kim, Sun-Deuk;Shin, Yun-Yeol;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.366-373
    • /
    • 1998
  • Polydentate Schiff base ligands, BSDT(1,9-bis(2-hydroxyphenyl)-2,5,8-triaza-1,8-nonadiene) having $N_3O_2$ atoms, BSTT(1,12-bis(2-hydroxyphenyl)-2,5,8,11-tetraaza-1,11-dodecadiene) having $N_4O_2$ atoms, BSTP(1,15-bis(2-hydroxyphenyl)-2,5,8,11,14-pentaaza-1,14-pentadodecadiene) having $N_5O_2$ atoms were synthesized. Protonation constants of these polydentate ligands were measured by potentiometry. Stability constants of the complexes between these ligands and the metal ions such as Cu(II), Ni(II) and Zn(II) were measured in DMSO by a polarographic method. It was observed that all metal(II) ions employed in this study formed 1:1 complexes with Schiff base ligands. Stability constants for the complex formation were in the order of Cu(II)>Ni(II)>Zn(II), and for the ligands were in the order of BSTP>BSTT>BSDT. There are due to the increase in the number of donor atoms. Both enthalpy and entropy changes were obtained in negative values. Exothermicity for the complex formation indicated tight binding between the ligands and metal ions. The negative entropy change would be related to the fact that solvent molecules are strongly interacting with the metal complexes.

  • PDF

Polarograms of Uranium(VI) and Rare Earth(III) Metal Complexes with Macrocyclic Ligands in Dimethylsulfoxide Solvent (디메틸술폭시드 용매중에서 거대고리리간드를 포함한 우라늄(VI)과 희토류(III) 금속 착물의 폴라로그램)

  • Hak Jin Jung;Oh Jin Jung;Chilnam Choi
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.233-242
    • /
    • 1988
  • The uranium(VI) complexes with new unsaturated macrocyclic ligands of cryptand types and the neodymium(III) complexes with cryptand 222 and DBC ligands have been investigated polarographically in dimethylsulfoxide solvent. The reduction states, electron numbers involved in the reduction process, effects of the added acid on the polarograms of complexes, and the mechanisms of the reduction electrode reactions have been examined. The stability constants and mole-ratio of new complexes were also obtained by polarographic method. The reaction of ligands was controlled by the diffusion in the reduction with four electrons at a step, whereas the redox reaction with six electrons at three steps in $UO_2\;^{2+}$ complexes with macrocyclic ligands and the redox reaction with one electron at a step in $Nd^{3+}$ complexes with cryptand 222 and DBC have been observed. The imine ligands formed stable complexes with uranium(VI) above pH 7.0, and the neodymium(III) complexes with cryptand 222 and DBC ligands were stable above pH 4.0.

  • PDF

Structural characterization and thermal behaviour of the bis(2-aminothiazole)bis(isothiocyanato)zinc(II) complex, Zn(NCS)2(C3H4N2S)2

  • Suh, Seung Wook;Kim, Inn Hoe;Kim, Chong-Hyeak
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.386-390
    • /
    • 2005
  • The zinc(II) complex, $Zn(NCS)_2(C_3H_4N_2S)_2$, I, has been synthesized and characterized by single crystal X-ray diffraction, thermal analysis and infrared spectroscopy. The complex I crystallizes in the triclinic system, $P\bar{1}$ space group with a = 7.587(1), b = 8.815(1), $c=12.432(2){\AA}$, ${\alpha}=75.584(8)$, ${\beta}=83.533(9)$, ${\gamma}=68.686(8)^{\circ}$, $V=750.0(2){\AA}^3$, Z = 2, $R_1=0.036$ and ${\omega}R_2=0.101$. The central Zn(II) atom has a tetrahedral coordination geometry, with the heterocyclic nitrogen atoms of 2-aminothiazole ligands and the nitrogen atoms of isothiocyanate ligands. The crystal structure is stabilized by one-dimensional networks of the intermolecular $N-H{\cdots}S$ hydrogen bonds between the amino group of 2-aminothiazole ligands and the sulfur atom of isothiocyanate ligands. Based on the results of thermal analysis, the thermal decomposition reaction of complex I was analyzed to have three distinctive stages such as the loss of 2-aminothiazole, the decomposition of isothiocyanate and the formation of metal oxide.

Theoretical Studies of Diphosphinoaminoethane Ligands with Methyl Group (착물을 형성하는 가지달린 사슬형 아미노포스린류 리간드에 대한 이론적 연구)

  • Lee, Chul-Jae;Kim, Dong-Yub;Jung, Maeng-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.4
    • /
    • pp.95-101
    • /
    • 2012
  • In order to explain observed catalytic reactivity of aminophosphine complexes (seven-membered chelate), total energy, net charge, atomic orbital electron population, HOMO and LUMO energy of free ligands are calculated by PM3 methods of HyperChem 6.0. Free ligands are 1,2-bis{(diphosphino)amino}propane{$H_2PNHCH_2CH(CH_3)NHPH_2$;ligand 1},1,2-bis{(dimenylphosphino)amino}propane{$(CH_3)_2PNHCH_2CH(CH_3)NHP(CH_3)_2$;ligand 2},1,2-bis{(diphenylphosphino)amino}propane{$(C_6H_5)_2PNHCH_2CH(CH_3)NHP(C_6H_5)_2$;ligand 3}. The result showed that ligand 3 is stable than ligand 2 and ligand 1 and ligand 2 is stable than ligand 1 in total energy. Net charge of P atom is changed by H atom, methyl groups and phenyl groups in P atoms. Net charge of N atoms in ligands is nagative. The results of atomic orbital electron population are similar net charge data..

Synthesis, Antioxidant Activity and Fluorescence Properties of Novel Europium Complexes with (E)-2- or 4-hydroxy-N'-[(2-hydroxynaphthalen-1-yl)methylene]benzohydrazide Schiff Base

  • Liu, Lijun;Alam, Mohammad Sayed;Lee, Dong-Ung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3361-3367
    • /
    • 2012
  • Two novel Eu(III) complexes with notable properties have been successfully prepared with hydrazone Schiff base ligands, (E)-2-hydroxy-N'-[(2-hydroxynaphthalen-1-yl)methylene]benzohydrazide (3a) and (E)-4-hydroxy-N'-[(2-hydroxynaphthalen-1-yl)methylene]benzohydrazide (3b). DFT, FMO energy and Mulliken charge distribution studies of the ligands allowed us to hypothesize that their HC=N, > C=O and -OH (naphthyl) groups were involved in coordinating with the $Eu^{3+}$ ion. The eight coordination sites of the $Eu^{3+}$ ion were occupied by the three functional groups of the two ligands (3a or 3b) mentioned above and two water molecules. Similar UV, IR and fluorescence spectra indicated the presence of comparable coordination environments for the $Eu^{3+}$ ion in both complexes. Both the ligands and their complexes exhibited moderate DPPH radical scavenging activity. Moreover, it was found that the Eu(III) complexes exhibited fluorescence properties.

MO Studies on the Electronic Structure and Reactivity of Glycinato, Glycine Ester Ligands (Glycinato 및 Glycine Ester 리간드의 전자구조와 반응성에 관한 분자궤도함수론적 연구)

  • Ja Hong Kim
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.15-19
    • /
    • 1980
  • CNDO/2, EHT molecular orbital methods are used to investigate the electronic structure and reactivity of glycinato, glycine ester ligands. The results show that bidentate glycinato has a more stable structure, Gly-I with a $105.9^{\circ}$dihedral angle between ${\Delta}O_4C_3C_2$ and ${\Delta}C_3C_2N_1$ than Gly-Ⅱ. The electron inductive effects in the alkyl group substituted glycine ester ligands can also be derived from the calculation. According to the electron density, qN of ligands on the basis of CNDO/2 MO calculations, it is concluded that the stabilities are in the order of glycinato > Gly-Et-ester > Gly-i-Pr-ester > Gly-Me-ester.

  • PDF

Potentially Multidentate Tripodal Amine Catechol Ligands as Chelators for Ga(III) and In(III)

  • Sahoo, Suban K.;Baral, Minati;Bera, Rati Kanta;Kanungo, B. K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1956-1962
    • /
    • 2009
  • The binding abilities of two multidentate tripodal amine catechol ligands, cis,cis-1,3,5-tris[(2,3-dihydroxybenzylamino) aminomethyl]cyclohexane (TMACHCAT, $L^1)\;and\;N^1,N^3,N^5$-tris(2-(2,3-dihydroxybenzylamino) ethyl)cyclohexane-1,3,5-tricarboxamide (CYCOENCAT, $L^2$) with Ga(III) and In(III) have been investigated by potentiometric and spectrophotometric methods in an aqueous medium of 0.1 M KCl at 25 ${\pm}\;1\;{^{\circ}C}.$ The ligands $L^1\;and\;L^2$ formed various monomeric species $MLH_3,\;MLH_2$, MLH and ML (M = $Ga^{+3}\;and\;In^{+3}$) and showed potential to form strong encapsulated tris(catechol) type complexes. The coordination modes, binding ability and selectivity of the ligands towards Ga(III) and In(III) have been discussed with the help of experimental evidences, and supported with molecular modeling calculations.

Ag(Ⅰ) Ion Selective Macrocyclic Ligands: The Complexation and Liquid Membrane Transport Phenomena of Benzylated Nitrogen-Oxygen Donor Macrocyclic Ligands (Ag(Ⅰ) 이온 선택성을 갖는 거대고리 리간드: 벤질 치환기를 갖는 질소-산소 주개 거대고리 리간드의 착물 형성과 액체막 이동 현상)

  • Kim, Jeong;Ahn, Tae Ho;Lee, Myoung Ro;Cho, Moon Hwan;Kim, Si Joong
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.167-171
    • /
    • 1999
  • An investigation of the interaction of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II) and Ag(I) with two N,N'-dibenzylated nitrogen-oxygen mixed donor macrocyclic ligands, has been carried out. Tle log K values for the respective complexes in 95% methanol have been determined potentiometrically. Both ligands have formed stable complex with only Cu(II) and Ag(I) ion. Transport measurements in a bulk liquid membrane system exhibited a very high selectivity of Ag(I) ion over the other metal ions used.

  • PDF

Recent Progress in Orphan Nuclear Hormone Receptors

  • Lee, Yoon-Kwang;Tzameli, Iphigeoia;Zavacki, Ann Marie;Moore, David D.
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.419-426
    • /
    • 1998
  • The nuclear hormone receptor superfamily currently includes approximately equal numbers of conventional receptors and orphan receptors, which do not have known ligands. Here, we review recent progress from this laboratory on three orphans, two of which are moving from orphan to conventional receptor status. Perhaps the most unusual is CAR, which is a constitutive transactivator in the absence of ligands but becomes transcriptionally inactive in the presence of its ligands, which are androgen metabolites. The response of CAR to its ligands is thus opposite to that of the conventional receptor paradigm. RIP14 (also known as FXR) is activated by both all-trans retinoic acid and a synthetic retinoid previously thought to specifically target the retinoic acid receptors (RARs), and thus appears to be a novel retinoid receptor. Finally, SHP is a novel orphan that lacks a DNA binding domain and interacts with a number of other receptor superfamily members. While it generally inhibits its targets, including CAR, the retinoid X receptor (RXR), and the estrogen receptor (ER), it stimulates transactivation by the orphan SF-1.

  • PDF