• Title/Summary/Keyword: lifting method

Search Result 407, Processing Time 0.031 seconds

Proposal for Improvement in Prediction of Marine Propeller Performance Using Vortex Lattice Method (와류격자법에 의한 프로펠러 성능추정 향상을 위한 제안)

  • Suh, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.48-53
    • /
    • 2011
  • Current trends in propeller design have led to the need for extremely complex blade shapes, which place great demands on the accuracy of design and analysis methods. This paper presents a new proposal for improving the prediction of propeller performance with a vortex lattice method using the lifting surface theory. The paper presents a review of the theory and a description of the numerical methods employed. For 8 different propellers, the open water characteristics are calculated and compared with experimental data. The results are in good agreement in the region of a high advanced velocity, but there are differences in the other case. We have corrected the parameters for the trailing wake modeling in this paper, and repeated the calculation. The new calculation results are more in agreement with the experimental data.

Inclination angle influence on noise of cavitating marine propeller

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.49-65
    • /
    • 2020
  • In this study, the effects of inclined shaft angle on the hydro-acoustic performance of cavitating marine propellers are investigated by a numerical method developed before and Brown's empirical formula. The cavitating blades are represented by source and vortex elements. The cavity characteristics of the blades such as cavitation form, cavity volume, cavity length etc., are computed at a given cavitation number and at a set advance coefficient. A lifting surface method is applied for these calculations. The numerical lifting surface method is validated with experimental results of DTMB 4119 model benchmark propeller. After calculation of hydrodynamic characteristics of the cavitating propeller, noise spectrum and overall sound pressure level (OASPL) are computed by Brown's equation. This empirical equation is also validated with another numerical results found in the literature. The effects of inclined shaft angle on thrust coefficient, torque coefficient, efficiency and OASPL values are examined by a parametric study. By modifying the inclination angles of propeller, the thrust, torque, efficiency and OASPL are computed and compared with each other. The influence of the inclined shaft angle on cavity patterns on the blades are also discussed.

Design of Trans-cavitating Propellers and Performance Analyses of the Test Result

  • Yim, Boh-yun;Kim, Ki-Sup;Ahn, Jong-Woo;Lee, Jin-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.2 no.1
    • /
    • pp.13-30
    • /
    • 1998
  • The design method for trans-cavitating propellers is considered as the combination of super-and sub-cavitating propellers. Especially the design method of the super-cavitating region of the propeller blade is elaborated. A design example is shown. Encouraging test results obtained in the Korea Research Institute of Ship and Ocean (KRISO) cavitation tunnel of a model designed by the present method are discussed.

  • PDF

The Added Mass and Damping for the Axial Rigid Body Motion of a Marine Propeller Rotating in a Uniform Flow (선박용 프로펠러의 종방향 강체운동에 대한 부가질량)

  • Kim, Young-Joong;Lee, Hyun-Yup;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.309-314
    • /
    • 2008
  • An experimental method to estimate the added mass of a marine propeller has been developed for the axial rigid body motion in still water, and the experiments have been carried out. The experimental result has been compared to the theoretical result by PRODAS based on the unsteady lifting surface theory. The experimental method developed in this research and the theoretical method by PRODAS have been validated by confirming good agreements between the experimental results and the theoretical ones. Also the comparison to the results by empirical formula has been made and discussed.

Study on Optimization for Construction Vertical Lifting with Transfer Operation for Super High-rise Buildings (초고층 건축공사의 리프트 수직 환승운영 최적화 방안 연구)

  • Moon, Jooyong;Park, Moonseo;Lee, Hyunsoo;Jung, Minhyuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.6
    • /
    • pp.53-62
    • /
    • 2014
  • Recently, the number of super high-rise building projects have been increased after recovering from international financial crisis. In super high-rise building project, vertical lifting is critical to overall project productivity, due to its limited lifting equipments. Also for projects which buildings' height are higher than 400m, transfer operation in lifting is inevitable because of lifts' maximum lifting height. In transfer operation, setting a transfer floor is essential for saving lifting time of resources. In this research, using discrete event simulation modeling with AnyLogic 7.0 software and metaheuristic optimization with OptQuest software, the method of optimizing a transfer floor for workers during the morning peak time is proposed. Comparing to the result of the case which transfer floor is designated to the middle floor, setting optimized transfer floor significantly decrease the total lifting time of workers. By using proposed simulation and optimization tool, saving budget and time through increasing available working hour is expected.

External Fixation of Retaining Ligament in Correction of Facial Disfigurement in Type-1 Neurofibromatosis Patients (유지 인대의 외부 고정을 통한 제1형 신경섬유종증 환자의 안면부 변형 교정)

  • Myung, Yu-Jin;Lee, Yoon-Ho
    • Archives of Plastic Surgery
    • /
    • v.38 no.3
    • /
    • pp.257-262
    • /
    • 2011
  • Purpose: In neurofibromatosis patients, complete surgical excision of the mass is almost impossible and surgical treatment usually consists of multiple serial excisions that only result in a debulking effect. Remnant tumor mass has a gravitational effect on facial soft tissues that leads to sagging of skin and soft tissue, and eventually, facial disfigurement and asymmetry. The purpose of our surgical method is to perform soft tissue lifting with longer lasting effect with less surgical risk of damaging facial nerve and vessels. With external fixation using K-wire or surgical screw, the procedure only called for a short incision length and had additional adhesive properties that enabled anchoring of soft tissue in a lifted position for a longer postoperative period. Methods: A total of 5 neurofibromatosis patients (NF-1) visited our clinic for mass reduction and face lifting. The age of patients ranged from 13 to 42 (mean 28.8 years), and most patients had a long history of multiple excisions in the past. Face lifting was performed in 2 different areas, the periorbital area in 3 patients, and the midface in 2 patients. The materials used in fixation of retaining ligament were K-wire (n=3) and titanium screw (n=2). Results: Follow up period was from 5 month to 3 years and 1 month (mean=2 years and 1 month). All patients conveyed satisfaction with the results and no major complications were reported. The lifting effect lasted for as long as 3 years, and there were no complaints of relapse of soft tissue depression or sagging within the operated area. 1 patient (M/13) needed secondary k-wire insertion and additional mass excision in 1 year and 10 months postoperatively due to tumor growth. In two patients with K-wire fixation, mild dimpling and tenderness were observed in the follow up period, but in about 2 months postoperatively, dimpling was relieved and there was no need for removal of fixating material. Conclusion: Surgical lifting in neurofibromatosis patients can be challenging, for mass excision cannot be done completely and gravitational effect by residual mass can be persistent. External fixation of the retaining ligament in patients with neurofibromatosis can give satisfactory results-for incision length is relatively shorter, and the lifting effect can last longer compared to other various face lifting techniques.

Analysis of the Influence of Ground Effect on the Aerodynamic Performance of a Wing Using Lifting-Line Method (양력선 방법을 이용한 지면효과가 날개의 공력성능에 미치는 영향 분석)

  • Lee, Chang Ho;Kang, Hyung Min;Kim, Cheolwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.298-304
    • /
    • 2014
  • The lifting-line method based on Weissinger's method is extended to be able to analyze the ground effect. The method is applied to predict the variation of aerodynamic performance due to ground effect for the elliptic wing with aspect ratio of 10 and the wing of human powered aircraft. While the vortex strength of the wing increases slightly, the downwash decreases significantly as the wing approaches to the ground. For the wing of human powered aircraft, the increment of lift at the height of 2m is 5% than the lift outside the influence of ground effect. The decrease of induced drag at the height of wing span is 10% and at the height of 2m is 55% than that out of ground effect.

Sparse Point Representation Based on Interpolation Wavelets (보간 웨이블렛 기반의 Sparse Point Representation)

  • Park, Jun-Pyo;Lee, Do-Hyung;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.8-15
    • /
    • 2006
  • A Sparse Point Representation(SPR) based on interpolation wavelets is presented. The SPR is implemented for the purpose of CFD data compression. Unlike conventional wavelet transformation, the SPR relieves computing workload in the similar fashion of lifting scheme that includes splitting and prediction procedures in sequence. However, SPR skips update procedure that is major part of lifting scheme. Data compression can be achieved by proper thresholding method. The advantage of the SPR method is that, by keeping even point physical values, low frequency filtering procedure is omitted and its related unphysical thresholing mechanism can be avoided in reconstruction process. Extra singular feature detection algorithm is implemented for preserving singular features such as shock and vortices. Several numerical tests show the adequacy of SPR for the CFD data. It is also shown that it can be easily extended to nonlinear adaptive wavelets for enhanced feature capturing.

Position Control of AS/RS Stacker Crane By Using Cain-Scheduled Control Method in Automated High Rack Warehouse System

  • Kim, Hwan-Seong;You, Sam-Sang;Shigeyasu Kawaji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.198-201
    • /
    • 1999
  • An automated storage and retrieval machinery for high rack warehouse systems is developed in order to stack the various kinds of productions. However, according to increase in the rack height, the long lead time should be taken. In stacker crane systems, the variations of the lifting height and the load generate the vibration of lifting machine, and it makes a Position control to be difficult Therefore, the reduction of vibration will be important factor for saving the lead time and the damage of Productions. This paper deals with a position control of stacker crane in automated high rack warehouse system by using a gain-scheduled control algorithm via a LMI method, where the variations of elastic coefficient of the stacker crane's post are considered.

  • PDF

A Study on Fluid-Structure Interaction of a Hydrostatic Thrust Bearing (정압 스러스트 베어링의 유체-구조물 사이의 상호작용에 관한 연구)

  • Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.92-98
    • /
    • 2006
  • In this study, the behavior characteristics of a hydrostatic thrust bearing used in hydraulic equipment was analyzed using a commercial finite element program, ADINA. The solid domain was modeled with the fluid domain simultaneously to solve the fully coupled problem, because this is a problem where a fully coupled analysis is needed in order to model the fluid-structure interaction(FSI). The results such as bearing deformation, stress, film thickness and lifting bearing force were obtained through FSI analysis, and then they were compared with the results calculated from the classical method, a single step sequential analysis. It was found that the result difference between two analyses was increased according to the injection pressure. Therefore, in case of high pressure loading, it is desirable to conduct the FSI analysis to examine the deformation characteristics of a hydrostatic slipper bearing.

  • PDF