• 제목/요약/키워드: lifted matrices

검색결과 3건 처리시간 0.014초

GLIFT CODES OVER CHAIN RING AND NON-CHAIN RING Re,s

  • Elif Segah, Oztas
    • 대한수학회보
    • /
    • 제59권6호
    • /
    • pp.1557-1565
    • /
    • 2022
  • In this paper, Glift codes, generalized lifted polynomials, matrices are introduced. The advantage of Glift code is "distance preserving" over the ring R. Then optimal codes can be obtained over the rings by using Glift codes and lifted polynomials. Zero divisors are classified to satisfy "distance preserving" for codes over non-chain rings. Moreover, Glift codes apply on MDS codes and MDS codes are obtained over the ring 𝓡 and the non-chain ring 𝓡e,s.

GAUSS SUMS FOR U(2n + 1,$q^2$)

  • Kim, Dae-San
    • 대한수학회지
    • /
    • 제34권4호
    • /
    • pp.871-894
    • /
    • 1997
  • For a lifted nontrivial additive character $\lambda'$ and a multiplicative character $\chi$ of the finite field with $q^2$ elements, the 'Gauss' sums $\Sigma\lambda'$(tr $\omega$) over $\omega$ $\in$ SU(2n + 1, $q^2$) and $\Sigma\chi$(det $\omega$)$\lambda'$(tr $\omega$) over $\omega$ $\in$ U(2n + 1, $q^2$) are considered. We show that the first sum is a polynomial in q with coefficients involving certain new exponential sums and that the second one is a polynomial in q with coefficients involving powers of the usual twisted Kloosterman sums and the average (over all multiplicative characters of order dividing q-1) of the usual Gauss sums. As a consequence we can determine certain 'generalized Kloosterman sum over nonsingular Hermitian matrices' which were previously determined by J. H. Hodges only in the case that one of the two arguments is zero.

  • PDF

수정된 보간 웨이블렛응 이용한 적응 웨이블렛-콜로케이션 기법 (An Efficient Adaptive Wavelet-Collocation Method Using Lifted Interpolating Wavelets)

  • 김윤영;김재은
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.2100-2107
    • /
    • 2000
  • The wavelet theory is relatively a new development and now acquires popularity and much interest in many areas including mathematics and engineering. This work presents an adaptive wavelet method for a numerical solution of partial differential equations in a collocation sense. Due to the multi-resolution nature of wavelets, an adaptive strategy can be easily realized it is easy to add or delete the wavelet coefficients as resolution levels progress. Typical wavelet-collocation methods use interpolating wavelets having no vanishing moment, but we propose a new wavelet-collocation method on modified interpolating wavelets having 2 vanishing moments. The use of the modified interpolating wavelets obtained by the lifting scheme requires a smaller number of wavelet coefficients as well as a smaller condition number of system matrices. The latter property makes a preconditioned conjugate gradient solver more useful for efficient analysis.