• Title/Summary/Keyword: lift flat

Search Result 58, Processing Time 0.023 seconds

Patterned Growth of ZnO Semiconducting Nanowires and its Field Emission Properties (ZnO 반도체 나노선의 패턴 성장 및 전계방출 특성)

  • Lee, Yong-Koo;Park, Jae-Hwan;Choi, Young-Jin;Park, Jae-Gwan
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.623-626
    • /
    • 2010
  • We synthesized ZnO nanowires patterned on Si substrate and investigated the field emission properties of the nanowires. Firstly, Au catalyst layers were fabricated on Si substrate by photo-lithography and lift-off process. The diameter of Au pattern was $50\;{\mu}m$ and the pattern was arrayed as $4{\times}4$. ZnO nanowires were grown on the Au catalyst pattern by the aid of Au liquid phase. The orientation of the ZnO nanowires was vertical on the whole. Sufficient brightness was obtained when the electric field was $5.4\;V/{\mu}m$ and the emission current was $5\;mA/cm^2$. The threshold electric field was $5.4\;V/{\mu}m$ in the $4{\times}4$ array of ZnO nanowires, which is quite lower than that of the nanowires grown on the flat Si substrate. The lower threshold electric field of the patterned ZnO nanowires could be attributed to their vertical orientation of the ZnO nanowires.

Motion Planning and Control of Wheel-legged Robot for Obstacle Crossing (휠-다리 로봇의 장애물극복 모션 계획 및 제어 방법)

  • Jeong, Soonkyu;Won, Mooncheol
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.500-507
    • /
    • 2022
  • In this study, a motion planning method based on the integer representation of contact status between wheels and the ground is proposed for planning swing motion of a 6×6 wheel-legged robot to cross large obstacles and gaps. Wheel-legged robots can drive on a flat road by wheels and overcome large obstacles by legs. Autonomously crossing large obstacles requires the robot to perform complex motion planning of multi-contacts and wheel-rolling at the same time. The lift-off and touch-down status of wheels and the trajectories of legs should be carefully planned to avoid collision between the robot body and the obstacle. To address this issue, we propose a planning method for swing motion of robot legs. It combines an integer representation of discrete contact status and a trajectory optimization based on the direct collocation method, which results in a mixed-integer nonlinear programming (MINLP) problem. The planned motion is used to control the joint angles of the articulated legs. The proposed method is verified by the MuJoCo simulation and shows that over 95% and 83% success rate when the height of vertical obstacles and the length of gaps are equal to or less than 1.68 times of the wheel radius and 1.44 times of the wheel diameter, respectively.

A study on the Theory of 'Ja-Yeol(刺熱)' in 32nd Chapter of 'So Moon(素問) Yellow Emperior's Nei-Ching(黃帝內經)' (황제내경(黃帝內經) 소문(素問) 자열론(刺熱論)에 대한 연구(硏究))

  • Kwon, Kun-Hyuck;Hong, Won-Sik
    • Journal of Korean Medical classics
    • /
    • v.3
    • /
    • pp.151-217
    • /
    • 1989
  • In this thesis, I intend to study the translational and clinical interpretation through the theory of Ja-Yeol, and reached the following conclusions. 1. Liver-Heat-Disease due to absess of the function of expelling and lifting off, that Liver-Yang cannot lift up to upper-warmer, and stagnate liver. I think the symptoms of yellowish urine, abdominal pain, somnolence, fever belong to the syndrome of 'Gi-Bun(氣分)', and the symptoms of ravings with surprising, distending pain of hypochondrium, restless involuntary movement of the limbs, unable to lie flat belong to the syndrome of 'Hyeol-Bun(血分)'. 2. Heart-Heat-Disease due that 'Eum-Gi(陰氣)' in heart cannot lay down and reach to stagnate at heart, inner part. I think the symptoms of unjoy, acute cardiac pain, fidgetiness, well-nausea, headeche, reddish face, anhidrosis, etc. reveal with Heart-Heat-Disease. 3. Spleen-Beat-Disease due that 'Eum-Gi' in spleen cannot lay down and Yin of spleen changs heat. I think the symptoms of heaviness of head, cheek pain, fidgetiness, cyanosis, well-nausea, fever, not to let flex and reflex with back pain, diarrhea with abdominal pain, left and right cheek pain reveal with Spleen-Heat-Disease. I think symptoms of fever, diarrhea with abdominal pain belong to the syndrome of Yin-exhausion. 4. Lung-Heat-Disease due to that 'Eum-Gi' in lung cannot lay down. When 'Wi-Gi(衛氣)' stagnates at external part, I think, the symptoms of intolerance to wind and cold, yellowish fur, fever reveal. When Wi-Gi stagnates at lung, inner part, I think, the symptoms of dispnea with cough, pain on chest and back, unable to breath deeply, hydrosis and chilling reveal. 5. Kidney-Heat-Disease, in that the symptoms of back pain, leg aching, extreme thirst and frequently drink, fever, pain and stiffness of nape, cooling and aching leg, heat on plantar pedis, not trying to speak reveal is regarded external heat disease of 'Tai-Yang-Gyeong's(太陽經)' disease that asthenic fever open 'Tai-Yang-Gyeong' and lift by not enough of 'Yang-Gi(陽氣)' lifeing up from Kidney space, the water space of five elements.

  • PDF

Modeling of flat otter boards motion in three dimensional space (평판형 전개판의 3차원 운동 모델링)

  • Choe, Moo-Youl;Lee, Chun-Woo;Lee, Gun-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.1
    • /
    • pp.49-61
    • /
    • 2007
  • Otter boards in the trawl are the one of essential equipments for the net mouth to be spread to the horizontal direction. Its performance should be considered in the light of the spreading force to the drag and the stability of towing in the water. Up to the present, studies of the otter boards have focused mainly on the drag and lift force, but not on the stability of otter boards movement in 3 dimensional space. In this study, the otter board is regarded as a rigid body, which has six degrees of freedom motion in three dimensional coordinate system. The forces acting on the otter boards are the underwater weight, the resistance of drag and spread forces and the tension on the warps and otter pendants. The equations of forces were derived and substituted into the governing equations of 6 degrees of freedom motion, then the second order of differential equations to the otter boards were established. For the stable numerical integration of this system, Backward Euler one of implicit methods was used. From the results of the numerical calculation, graphic simulation was carried out. The simulations were conducted for 3 types of otter boards having same area with different aspect ratio(${\lambda}=0.5,\;1.0,\;1.5$). The tested gear was mid-water trawl and the towing speed was 4k't. The length of warp was 350m and all conditions were same to each otter board. The results of this study are like this; First, the otter boards of ${\lambda}=1.0$ showed the longest spread distance, and the ${\lambda}=0.5$ showed the shorted spread distance. Second, the otter boards of ${\lambda}=1.0$ and 1.5 showed the upright at the towing speed of 4k't, but the one of ${\lambda}=0.5$ heeled outside. Third, the yawing angles of three otter boards were similar after 100 seconds with the small oscillation. Fourth, it was revealed that the net height and width are affected by the characteristics of otter boards such as the lift coefficient.

The effect of Arch Support Taping on Plantar Pressure and Navicular Drop Height in subjects with Excessive pronated foot during 6 Weeks (6주간의 활지지 테이핑(arch support taping) 적용이 과도하게 엎침된 발의 발바닥압력과 발배뼈 높이에 미치는 영향)

  • Kim, Tae-Ho;Koh, Eun-Kyung;Jung, Do-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.4
    • /
    • pp.489-496
    • /
    • 2011
  • Purpose : The purpose of this study was to identify the effect of an arch support taping on navicular drop height and plantar pressure in the subjects with excessive pronated foot for 6 weeks. Methods : The fifteen subjects with the pronated foot group and the fifteen subjects with the normal foot group volunteered for this study. Both groups were applied arch support taping at 3 times a week during 6 weeks. Subjects were assessed navicular drop test to evaluate pronation of subtalar joint and plantar pressure on treadmill for pressure measuring system during walking with a bare foot state at pre- taping, after 3 weeks, and after 6 weeks. A two-way repeated analysis of variance design was used to examine the difference of navicular drop height and plantar pressure in the pronation foot group and the normal foot group. Results : The pronated foot group had significantly decreased both the navicular drop height and the plantar pressure under the medial midfoot than the normal foot group after 6 weeks(p<.01). Conclusions : This study proposed that an arch support taping can be support to lift navicular bone as well as to transfer the foot pressure from medial midfoot to lateral midfoot in individuals with excessive pronated foot.

The turbulent wake of a square prism with wavy faces

  • Lin, Y.F.;Bai, H.L.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.127-142
    • /
    • 2016
  • Aerodynamic effects, such as drag force and flow-induced vibration (FIV), on civil engineering structures can be minimized by optimally modifying the structure shape. This work investigates the turbulent wake of a square prism with its faces modified into a sinusoidal wave along the spanwise direction using three-dimensional large eddy simulation (LES) and particle image velocimetry (PIV) techniques at Reynolds number $Re_{Dm}$ = 16,500-22,000, based on the nominal width ($D_m$) of the prism and free-stream velocity ($U_{\infty}$). Two arrangements are considered: (i) the top and bottom faces of the prism are shaped into the sinusoidal waves (termed as WSP-A), and (ii) the front and rear faces are modified into the sinusoidal waves (WSP-B). The sinusoidal waves have a wavelength of $6D_m$ and an amplitude of $0.15D_m$. It has been found that the wavy faces lead to more three-dimensional free shear layers in the near wake than the flat faces (smooth square prism). As a result, the roll-up of shear layers is postponed. Furthermore, the near-wake vortical structures exhibit dominant periodic variations along the spanwise direction; the minimum (i.e., saddle) and maximum (i.e., node) cross-sections of the modified prisms have narrow and wide wakes, respectively. The wake recirculation bubble of the modified prism is wider and longer, compared with its smooth counterpart, thus resulting in a significant drag reduction and fluctuating lift suppression (up to 8.7% and 78.2%, respectively, for the case of WSP-A). Multiple dominant frequencies of vortex shedding, which are distinct from that of the smooth prism, are detected in the near wake of the wavy prisms. The present study may shed light on the understanding of the underlying physical mechanisms of FIV control, in terms of passive modification of the bluff-body shape.

Investigation on spanwise coherence of buffeting forces acting on bridges with bluff body decks

  • Zhou, Qi;Zhu, Ledong;Zhao, Chuangliang;Ren, Pengjie
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.181-198
    • /
    • 2020
  • In the traditional buffeting response analysis method, the spanwise incomplete correlation of buffeting forces is always assumed to be same as that of the incident wind turbulence and the action of the signature turbulence is ignored. In this paper, three typical bridge decks usually adopted in the real bridge engineering, a single flat box deck, a central slotted box deck and a two-separated paralleled box deck, were employed as the investigated objects. The wind induced pressure on these bridge decks were measured via a series of wind tunnel pressure tests of the sectional models. The influences of the wind speed in the tests, the angle of attack, the turbulence intensity and the characteristic distance were taken into account and discussed. The spanwise root coherence of buffeting forces was also compared with that of the incidence turbulence. The signature turbulence effect on the spanwise root coherence function was decomposed and explained by a new empirical method with a double-variable model. Finally, the formula of a sum of rational fractions that accounted for the signature turbulence effect was proposed in order to fit the results of the spanwise root coherence function. The results show that, the spanwise root coherence of the drag force agrees with that of incidence turbulence in some range of the reduced frequency but disagree in the mostly reduced frequency. The spanwise root coherence of the lift force and the torsional moment is much larger than that of the incidence turbulence. The influences of the wind speed and the angle of attack are slight, and they can be ignored in the wind tunnel test. The spanwise coherence function often involves several narrow peaks due to the signature turbulence effect in the high reduced frequency zone. The spanwise coherence function is related to the spanwise separation distance and the spanwise integral length scales, and the signature turbulence effect is related to the deck-width-related reduced frequency.

Brassiere Pattern Designed to Fit into the Breast Shapes -based on ESMOD pattern- (유방유형별 절개형 브래지어 패턴 설계 -에스모드브라 패턴법을 기초로-)

  • Min, You-Suk;Kweon, Soo-ae;Sohn, Boo-hyun
    • Journal of Fashion Business
    • /
    • v.20 no.4
    • /
    • pp.15-35
    • /
    • 2016
  • The purpose of this study was to develop brassiere pattern designed to fit the breast shapes based on ESMOD pattern. It has three quarters cup round shape and also consists of three parts; upper cup, lower cup, and wings. Breast types are classified into five shapes; ideal breast, flat breast, upper developed breast, lower developed breast, and projecting breast. Two subjects for each breast type wore the brassiere, and they evaluated the appearance and wearing twice. Type I for research pattern designed to fit into the breast shape reflecting details of breast size were assessed as superior to the divided commercial type. However, wings' tightness of Type I for research pattern brassiere was high. Thus, to improve wearing satisfaction, extra was added to wing. Based on the results of wearing experiments of Type I for research, we adjusted and modified Type II for research pattern. Subsequently, its appearance and wearing were evaluated, in order to be improved. For upper developed breast pattern, we extended the length of lower part to balance upper and lower part, as the upper part was somewhat long. The lower developed breast has the closest feature to the ideal breast, suggestive that implies it does not require much improvement Projecting breast pattern has minimal space in the lower part, so we added the support to lift them to be similar to the ideal breasts. For all the breast shapes, we reduced the wings' tightness from 8% to 7% so that we could extend the length of the wings.