• Title/Summary/Keyword: lifetime reliability prediction

Search Result 71, Processing Time 0.021 seconds

A Comparative Study of Microstructure and Fracture Behavior in Reaction-Bonded Alumina (반응결합한 알루미나의 미구조와 파괴거동에 대한 비교 연구)

  • 이종호;장복기
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.517-524
    • /
    • 1992
  • For the present study two alumina bodies were prepared. The sinter-aid alumina body(SAA) was made by conventional sinter-process using sintering additives of TiO2 & MgO/CaO and the reaction-bonded alumina (RBA) made from Al-Al2O3 mixed powder. A comparison was made between those two bodies and this investigation seeks to evaluate their microstructure, physical properties and material's reliability as well as their fracture behaviour. In spite of its considerable microstructural densification accompanied by sintering shrinkage, SAA is largely inferior to RBA in fracture strength. However, SAA shows a somewhat higher m-value than RBA in respect to the material's reliability, the Weibull modulus(m). RBA, which has high fracture strength, shows much longer lifetime under static loading than SAA. Though, as with m of fracture strength, the reliability(mt) of lifetime prediction in RBA is less high than of SAA.

  • PDF

A Fuzzy Inference based Reliability Method for Underground Gas Pipelines in the Presence of Corrosion Defects

  • Kim, Seong-Jun;Choe, Byung Hak;Kim, Woosik;Ki, Ikjoong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.343-350
    • /
    • 2016
  • Remaining lifetime prediction of the underground gas pipeline plays a key role in maintenance planning and public safety. One of main causes in the pipeline failure is metal corrosion. This paper deals with estimating the pipeline reliability in the presence of corrosion defects. Because a pipeline has uncertainty and variability in its operation, probabilistic approximation approaches such as first order second moment (FOSM), first order reliability method (FORM), second order reliability method (SORM), and Monte Carlo simulation (MCS) are widely employed for pipeline reliability predictions. This paper presents a fuzzy inference based reliability method (FIRM). Compared with existing methods, a distinction of our method is to incorporate a fuzzy inference into quantifying degrees of variability in corrosion defects. As metal corrosion depends on the service environment, this feature makes it easier to obtain practical predictions. Numerical experiments are conducted by using a field dataset. The result indicates that the proposed method works well and, in particular, it provides more advisory estimations of the remaining lifetime of the gas pipeline.

A Study on Reliability Prediction of System with Degrading Performance Parameter (열화되는 성능 파라메터를 가지는 시스템의 신뢰성 예측에 관한 연구)

  • Kim, Yon Soo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.142-148
    • /
    • 2015
  • Due to advancements in technology and manufacturing capability, it is not uncommon that life tests yield no or few failures at low stress levels. In these situations it is difficult to analyse lifetime data and make meaningful inferences about product or system reliability. For some products or systems whose performance characteristics degrade over time, a failure is said to have occurred when a performance characteristic crosses a critical threshold. The measurements of the degradation characteristic contain much useful and credible information about product or system reliability. Degradation measurements of the performance characteristics of an unfailed unit at different times can directly relate reliability measures to physical characteristics. Reliability prediction based on physical performance measures can be an efficient and alternative method to estimate for some highly reliable parts or systems. If the degradation process and the distance between the last measurement and a specified threshold can be established, the remaining useful life is predicted in advance. In turn, this prediction leads to just in time maintenance decision to protect systems. In this paper, we describe techniques for mapping product or system which has degrading performance parameter to the associated classical reliability measures in the performance domain. This paper described a general modeling and analysis procedure for reliability prediction based on one dominant degradation performance characteristic considering pseudo degradation performance life trend model. This pseudo degradation trend model is based on probability modeling of a failure mechanism degradation trend and comparison of a projected distribution to pre-defined critical soft failure point in time or cycle.

A method for optimizing lifetime prediction of a storage device using the frequency of occurrence of defects in NAND flash memory (낸드 플래시 메모리의 불량 발생빈도를 이용한 저장장치의 수명 예측 최적화 방법)

  • Lee, Hyun-Seob
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.4
    • /
    • pp.9-14
    • /
    • 2021
  • In computing systems that require high reliability, the method of predicting the lifetime of a storage device is one of the important factors for system management because it can maximize usability as well as data protection. The life of a solid state drive (SSD) that has recently been used as a storage device in several storage systems is linked to the life of the NAND flash memory that constitutes it. Therefore, in a storage system configured using an SSD, a method of accurately and efficiently predicting the lifespan of a NAND flash memory is required. In this paper, a method for optimizing the lifetime prediction of a flash memory-based storage device using the frequency of NAND flash memory failure is proposed. For this, we design a cost matrix to collect the frequency of defects that occur when processing data in units of Drive Writes Per Day (DWPD). In addition, a method of predicting the remaining cost to the slope where the life-long finish occurs using the Gradient Descent method is proposed. Finally, we proved the excellence of the proposed idea when any defect occurs with simulation.

Service life prediction of rubber seal materials for immersion tunnel by accelerated thermal degradation tests (가속 열 노화시험을 이용한 침매터널용 고무 씰 소재의 사용수명 예측)

  • Park, Joon-Hyung;Park, Kwang-Hwa;Park, Hyeong-Geun;Kwon, Young-Il;Kim, Jong-Ho;Sung, Il-Kyung
    • Journal of Applied Reliability
    • /
    • v.9 no.4
    • /
    • pp.275-290
    • /
    • 2009
  • This paper considers accelerated thermal degradation tests which are performed for rubber seal materials used for undersea tunnels constructed by immersion method. Three types of rubber seals are tested; rubber expansion seal, omega seal, and shock absorber hose. Main ingredient of rubber expansion seal is EPDM(Ethylene Propylene Diene Monomer) and that of both omega seal and shock absorber hose is SBR(Styrene Butadiene Rubber). The accelerated stress is temperature and an Arrhenius model is introduced to describe the relationship between the lifetime and the stress. From the accelerated degradation tests, dominant failure mode of the rubber seals is found to be the loss of elongation. The lifetime distribution and the service life of the rubber seals at use condition are estimated from the test results. The acceleration factor for three types of rubber seals are also investigated.

  • PDF

Life-Cost-Cycle Evaluation Analysis of the Shunting Locomotive (입환기관차의 LCC 평가분석)

  • Bae Dae-Sung;Chung Jong-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.260-266
    • /
    • 2005
  • The deterioration of a shunting locomotive was characterized for the lifetime assessment. The locomotive has been used for shunting works in steel making processes, and in this investigation, various types of technical evaluation methods for the locomotive parts were employed to assess the current deterioration status and to provide important clue for lifetime prediction. Unlike other rolling stocks in railway applications, the diesel shunting locomotive is composed of major components such as diesel engine, transmission, gear box, brake system, electronic devices, etc., which cover more than 70 percent of the total price of the locomotive. Therefore, in this paper, each part of major components in the diesel locomotive was analyzed in terms of the degree of deterioration. The lift-cycle-cost (LCC) analysis was performed based on the maintenance and repair history as compared with economical cost to provide the cost-effective prediction, i.e., to assess either repair for reuse or putting the locomotive out of service based on cost-effective calculation.

Useful Lifetime Evaluation of Rubber Component for Elevator Cabin (승강기용 방진고무부품 특성 및 사용수명 평가)

  • Woo, Chang-Su;Park, Hyun-Sung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.576-580
    • /
    • 2008
  • Rubber material properties and useful life evaluation are very important in design procedure to assure the safety and reliability of the rubber components. In this paper, the evaluation of characteristics and useful life prediction of rubber component for elevator cabin were experimentally investigated. The material test and accelerated heat-aging test were carried. Rubber material constants were obtained by curve fittings of simple tension, pure shear and bi-axial tension test data. Heat aging test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the rubber material and component test several useful life prediction equations for rubber component were proposed. Predicted useful life of rubber component for elevator cabin agreed fairly with the experimental lives.

  • PDF

Prediction of Life Time of Rail Rubber Pad using Reliability Analysis Method

  • Park, Dae-Geun
    • International Journal of Railway
    • /
    • v.6 no.1
    • /
    • pp.13-25
    • /
    • 2013
  • Railpad prevents damage of the tie and ballast by reducing the impact and high frequency vibration, which occurs when a vehicle load transfers to a tie. But elasticity of the railpad can decrease under vehicle load and over usable period. If that happens, railpad will become stiffer. Increase in stiffness of the railpad also translates into a rise in track maintenance cost because it accelerates the damage of the track. In this study, accelerated heat ageing test was performed to predict an expectable lifetime of the railpad. As a result, it was predicted to be about sixteen years at $25^{\circ}C$ that life time of railpad using NR rubber from Arrhenius relationship. Also, it was predicted to be about thirty-two days at $100^{\circ}C$. At this time, a standard rate of thickness change is approximately within 12%.

Prediction of Service Life of The Rubber Fender (고무 방현재의 사용 수명 예측)

  • Lee, Se-Hee;Park, Jun-Hyung;Kim, Gwang-Sub
    • Journal of Applied Reliability
    • /
    • v.8 no.2
    • /
    • pp.87-100
    • /
    • 2008
  • The rubber fender is used to absorb the berthing energy that is produced when a ship is near a port, and it prevents collision between the ship and port. If the rubber fender becomes defective, the berthing energy cannot be absorbed when it is near the port, and damage can result from collisions due to the hardening process. In this research, when the rubber fender is heated, collisions can cause cracks and other damage. It is also confirmed from the research the lifetime distribution of the rubber fender. The researcher has predicted using different variables and elongation that a rubber fender has an 11year lifespan at $20^{\circ}C$.

  • PDF

Lifetime Prediction Using Reliability Analysis Method about for the Electric Detection System (신뢰성분석 기법을 이용한 고속철도 검측시스템의 수명예측)

  • Lee, Hyunwoo;Lee, Byeong-Gon;Lee, Chunghan
    • Journal of Applied Reliability
    • /
    • v.14 no.3
    • /
    • pp.191-196
    • /
    • 2014
  • The importance of railway safety has become increasingly significant domestically as well as internationally, as a series of high speed railway accidents and other major accidents have occurred recently. Especially for the domestic railway, the Korean Railway Safety Law has been revised recently, mandates all the domestic railway operation authorities to render the performance of RAMS and RCM. This study inspects and analyzes the current status of the sensing technology of the electric detection system to tell the status of railway facilities in the highway railway in a real time through a sensor. It also performs the reliability analysis of the electric detection system that is being progressed as a study assignment and suggests the system construction for the higher reliability.