• Title/Summary/Keyword: lifetime of network

Search Result 672, Processing Time 0.029 seconds

STO-based Cluster Header Election Algorithm (STO 기반 클러스터 헤더 선출 알고리즘)

  • Yoon, Jeong-Hyeon;Lee, Heon-Guk;Kim, Seung-Ku
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.587-590
    • /
    • 2019
  • This paper is about to improve the network life's reduction due to the deviation of sensor node and frequently change of network, the main problem of sensor network. The existing Scalable Topology Organization(STO)-based ZigBee Tree Topology Control Algorithm did not consider ways to consume power so the network lifetime is too short. Accordingly, per each round, electing a new parent node and consisting of the new network topology technique, The Cluster Header Selection, extending the network's overall lifetime. The OMNet++ Simulator yielded results from the existing STO Algorithm and the proposed Cluster Header Selection Technique in the same experimental environment, which resulted in an increase in overall network life by about 40% and an improvement of about 10% in performance in the remaining portion of the battery.

  • PDF

Swarm Intelligence Based Data Dependant Routing Algorithm for Ad hoc Network (군집단 지능 알고리즘 기반의 정보 속성을 고려한 애드 혹 네트워크 라우팅)

  • Heo, Seon-Hoe;Chang, Hyeong-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.462-466
    • /
    • 2008
  • In this paper, we propose a Data Dependant Swarm Intelligence Routing Algorithm(DSRA) based on "ant colony optimization" to improve routing performance in Mobile Ad hoc Network(MANET). DSRA generates a different routing path depending on data's characteristics: Realtime and Non-Realtime. DSRA achieves a reduced delay for Realtime data and an enhanced network lifetime from a decentralized path selection for Non-Realtime data. We demonstrate these results by an experimental study comparing with AODV, DSR and AntHocNet.

A Data-Centric Clustering Algorithm for Reducing Network Traffic in Wireless Sensor Networks (무선 센서 네트워크에서 네트워크 트래픽 감소를 위한 데이타 중심 클러스터링 알고리즘)

  • Yeo, Myung-Ho;Lee, Mi-Sook;Park, Jong-Guk;Lee, Seok-Jae;Yoo, Jae-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.2
    • /
    • pp.139-148
    • /
    • 2008
  • Many types of sensor data exhibit strong correlation in both space and time. Suppression, both temporal and spatial, provides opportunities for reducing the energy cost of sensor data collection. Unfortunately, existing clustering algorithms are difficult to utilize the spatial or temporal opportunities, because they just organize clusters based on the distribution of sensor nodes or the network topology but not correlation of sensor data. In this paper, we propose a novel clustering algorithm with suppression techniques. To guarantee independent communication among clusters, we allocate multiple channels based on sensor data. Also, we propose a spatio-temporal suppression technique to reduce the network traffic. In order to show the superiority of our clustering algorithm, we compare it with the existing suppression algorithms in terms of the lifetime of the sensor network and the site of data which have been collected in the base-station. As a result, our experimental results show that the size of data was reduced by $4{\sim}40%$, and whole network lifetime was prolonged by $20{\sim}30%$.

Energy-Aware Routing Algorithm using Backup Route for Ad hoc Network (애드혹 네트워크에서의 보조 경로를 이용한 에너지 인식 라우팅 알고리즘)

  • Jung Se-Won;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.23-32
    • /
    • 2005
  • This paper proposes a new algorithm for the energy constraint ad-hoc network which efficiently spread the energy usage over the network through the backup route scheme in order to increase the network lifetime. Recently, the various energy-efficient routing algorithms based on On-demanding method are proposed. Among them, PSR(Power-aware Source Routing) increased the network lifetime through the periodical route alternation depended on the use of the battery while DSR(Dynamice Source Routing) uses only the route selected during the route discovery phase. But PSR has a problem that it increases the route overhead because of the frequent flooding for the route alternation. For solving this problem, we propose HPSR(Hierarchical Power-aware Source Routing) which uses the backup route set during the route discovery in order to alternation the route without the flooding. HPSR increases the network lifetime due to the frequent route alternation using backup route while it decreases the routing overhead due to the reduced flooding. In this paper, we also prove the performance of HPSR through the simulation using OPNET.

Battery Lifetime Estimation Considering Various Power Profiles in Wireless Sensor Node (무선 센서 노드의 전력 소모 형태를 고려한 배터리 수명 계산)

  • Kim, Hyun;Kim, Chang-Soon;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.43-49
    • /
    • 2009
  • We present an efficient estimation method of the battery lifetime considering various power consumption profiles in wireless sensor nodes. The power profiles in single and periodic modes and the current dissipations in different operating modes are taken into account to find the total current consumption. Also, the self-discharge rate of a battery is taken into account to estimate the battery lifetime of a given sensor node. Finally we present a governing equation for finding the battery lifetime. We believe the proposed estimation method of the battery lifetime can be an efficient and effective method for low power design of sensor nodes.

Wireless-Powered Cooperative Multihop Transmission Method (무선 전력공급 기반 협력적 멀티홉 전송 방법)

  • Choi, Hyun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.499-502
    • /
    • 2018
  • We propose a wireless-powered multihop transmission scheme using inter-node cooperation in a linear network topology. The proposed protocol determines the energy transfer time for each node to make the lifetime of the each node be equal in order to maximize the lifetime of the multihop path. To make the lifetime of each node the same, we apply the flocking algorithm which imitates the behavior of a bird flock flying at the same velocity, so that the lifetime of the nodes is averaged locally. Simulation results show that the proposed algorithm can maximize the lifetime of the multihop path by making all nodes have the same lifetime.

  • PDF

Integrated Power Optimization with Battery Friendly Algorithm in Wireless Capsule Endoscopy

  • Mehmood, Tariq;Naeem, Nadeem;Parveen, Sajida
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.338-344
    • /
    • 2021
  • The recently continuous enhancement and development in the biomedical side for the betterment of human life. The Wireless Body Area Networks is a significant tool for the current researcher to design and transfer data with greater data rates among the sensors and sensor nodes for biomedical applications. The core area for research in WBANs is power efficiency, battery-driven devices for health and medical, the Charging limitation is a major and serious problem for the WBANs.this research work is proposed to find out the optimal solution for battery-friendly technology. In this research we have addressed the solution to increasing the battery lifetime with variable data transmission rates from medical equipment as Wireless Endoscopy Capsules, this device will analyze a patient's inner body gastrointestinal tract by capturing images and visualization at the workstation. The second major issue is that the Wireless Endoscopy Capsule based systems are currently not used for clinical applications due to their low data rate as well as low resolution and limited battery lifetime, in case of these devices are more enhanced in these cases it will be the best solution for the medical applications. The main objective of this research is to power optimization by reducing the power consumption of the battery in the Wireless Endoscopy Capsule to make it battery-friendly. To overcome the problem we have proposed the algorithm for "Battery Friendly Algorithm" and we have compared the different frame rates of buffer sizes for Transmissions. The proposed Battery Friendly Algorithm is to send the images on average frame rate instead of transmitting the images on maximum or minimum frame rates. The proposed algorithm extends the battery lifetime in comparison with the previous baseline proposed algorithm as well as increased the battery lifetime of the capsule.

A Novel Improved Energy-Efficient Cluster Based Routing Protocol (IECRP) for Wireless Sensor Networks

  • Inam, Muhammad;Li, Zhuo;Zardari, Zulfiqar Ali
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.67-72
    • /
    • 2021
  • Wireless sensor networks (WSNs) require an enormous number of sensor nodes (SNs) to maintain processing, sensing, and communication capabilities for monitoring targeted sensing regions. SNs are generally operated by batteries and have a significantly restricted energy consumption; therefore, it is necessary to discover optimization techniques to enhance network lifetime by saving energy. The principal focus is on reducing the energy consumption of packet sharing (transmission and receiving) and improving the network lifespan. To achieve this objective, this paper presents a novel improved energy-efficient cluster-based routing protocol (IECRP) that aims to accomplish this by decreasing the energy consumption in data forwarding and receiving using a clustering technique. Doing so, we successfully increase node energy and network lifetime. In order to confirm the improvement of our algorithm, a simulation is done using matlab, in which analysis and simulation results show that the performance of the proposed algorithm is better than that of two well-known recent benchmarks.

Lifetime Maximization of Wireless Video Sensor Network Node by Dynamically Resizing Communication Buffer

  • Choi, Kang-Woo;Yi, Kang;Kyung, Chong Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5149-5167
    • /
    • 2017
  • Reducing energy consumption in a wireless video sensor network (WVSN) is a crucial problem because of the high video data volume and severe energy constraints of battery-powered WVSN nodes. In this paper, we present an adaptive dynamic resizing approach for a SRAM communication buffer in a WVSN node in order to reduce the energy consumption and thereby, to maximize the lifetime of the WVSN nodes. To reduce the power consumption of the communication part, which is typically the most energy-consuming component in the WVSN nodes, the radio needs to remain turned off during the data buffer-filling period as well as idle period. As the radio ON/OFF transition incurs extra energy consumption, we need to reduce the ON/OFF transition frequency, which requires a large-sized buffer. However, a large-sized SRAM buffer results in more energy consumption because SRAM power consumption is proportional to the memory size. We can dynamically adjust any active buffer memory size by utilizing a power-gating technique to reflect the optimal control on the buffer size. This paper aims at finding the optimal buffer size, based on the trade-off between the respective energy consumption ratios of the communication buffer and the radio part, respectively. We derive a formula showing the relationship between control variables, including active buffer size and total energy consumption, to mathematically determine the optimal buffer size for any given conditions to minimize total energy consumption. Simulation results show that the overall energy reduction, using our approach, is up to 40.48% (26.96% on average) compared to the conventional wireless communication scheme. In addition, the lifetime of the WVSN node has been extended by 22.17% on average, compared to the existing approaches.

An Entropy-Based Routing Protocol for Supporting Stable Route Life-Time in Mobile Ad-hoc Wireless Sensor Networks (모바일 Ad-hoc 무선 센서 네트워크에서 안정된 경로의 Life-Time을 지원하기 위한 엔트로피 기반의 라우팅 프로토콜)

  • An, Beong Ku;Lee, Joo Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.31-37
    • /
    • 2008
  • In this paper, we propose an entropy-based routing protocol to effectively support both stable route construction and route lifetime in Mobile Ad-hoc Wireless Sensor Networks (MAWSN). The basic idea and feature of the proposed routing protocol are as follows. First, we construct the stable routing routes based on entropy concept using mobility of mobile nodes. Second, we consider a realistic approach, in the points of view of the MAWSN, based on mobile sensor nodes as well as fixed sensor nodes in sensor fields while the conventional research for sensor networks focus on mainly fixed sensor nodes. The performance evaluation of the proposed routing protocol is performed via simulation using OPNET(Optimized Network Engineering Tool) and analysis. The results of the performance evaluation show that the proposed routing protocol can efficiently support both the construction of stable route and route lifetime in mobile ad-hoc wireless networks.

  • PDF