• Title/Summary/Keyword: life-cycle cost(LCC)

Search Result 317, Processing Time 0.031 seconds

A Study on the Life Cycle Cost Analysis of the See-through a-si Building Integrated Photovoltaic System (투광형 비정질 BIPV 시스템의 LCC 평가에 관한 연구)

  • Lee, Han-Myoung;Oh, Min-Seok;Kim, Hway-Suh
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This study was carried out to evaluate the Life Cycle Cost(LCC) of three types of RTPV(Building Integrated Photovoltaic) systems-Glass plus Granite. Crystalline BIPV and See through Amorphous BIPV-which were vertically installed to generate the same power output(76 kW level). Initial investment costs. cost. savings and maintenance costs had been predicted during the period of analysing the LCC of three types of BIPV(Building Integrated Photovoltaic) systems installed for the purpose of evaluating the LCC. In case of cost savings, it had been analyzed by measuring the amount of electric power generated, reduction in lighting load and heat & cooling loads through simulation. From this analysis, it was predicted that the See-through amorphous BIPV offering cost saving advantages demonstrated the economical efficiency similar to the Class plus Granite when it is backed by more than 20 years of durability.

Optimal Design of Steel Box Girders Considering LCC (LCC를 고려한 강박스 거더의 최적설계)

  • 안예준;이현섭;신영석;박장호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.339-346
    • /
    • 2004
  • This paper presents a method to minimize Life-Cycle Cost(LCC) of steel box girders. The LCC function considered in this paper includes initial cost, expected life-cycle maintenance cost and repair cost. A resistance force curve is derived from a condition grade curve of steel girders and optimal design of steel box girders is performed on the basis of derived resistance force curve. Also, in this paper annual costs of various case in LCC are compared and analyzed. It is concluded that the optimal design of steel box girders considering LCC by a presented method will lead to more economical and safer girders than conventional design.

  • PDF

Life-Cycle Analysis of the River Water Unutilized Energy System (LCC 분석에 의한 하천수 미활용에너지 이용시스템의 경제성 평가)

  • Park Il-Hwan;Yoon Hyung-Kee;Chang Ki-Chang;Park Jun-Taek;Park Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.596-604
    • /
    • 2005
  • This paper presents the work on evaluating the LCC (Life-Cycle Cost) of a heat pump system as unutilized energy system. The river water as an unutilized energy source was used for the heat source of heat pump system. LCC analysis is a concrete method for evaluating the economical efficiency of energy facilities of building. The present case study shows an example of adequate use of the LCC analysis on a heat pump system and conventional gas boiler and refrigerator for building heat supply. A life cycle of 20 years was used to calculated net present value of energy cost. Over a 20 year life cycle, the energy cost could be reduced by 612 million won if a heat pump system were used instead of a conventional boiler and an absorption refrigerator.

Indirect Cost Effects on Life-Cycle-Cost Effective Optimum Design of Steel Box Girder Bridge (강상자형교의 LCC 최적설계에 미치는 간접비용의 영향)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, Chul Jun;Eom, In Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.115-130
    • /
    • 2005
  • This paper presents the effects of indirect costs on Life-Cycle-Cost(LCC) effective optimum design of steel-box girder bridges. The LCC formulations considered in the LCC optimization of the bridges consist of initial cost and expected rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, and indirect costs such as road user costs and indirect socio-economic losses. To demonstrate the LCC-effectiveness for optimum design of the bridges, an actual steel box girder bridge having two continuous spans(2@50m=100m) is considered as a numerical example. And also, in this paper, various sensitivity analyses are performed to investigate the effects of indirect costs caused by traffic conditions such as number of detour route, number of lane on detour route, length of detour route, and traffic volumes on the LCC-effective optimum design. From the numerical investigations, it may be concluded that indirect costs caused by traffic network may sensitively influence on the LCC-effective optimum design of steel-box girder bridges. Therefore, it may be stated that the traffic conditions should be considered as one of the important items in the LCC-effective optimum design of the bridges.

A Study on Sensitivity Analysis of Life-Cycle Cost of Concrete Bridges (콘크리트 교량의 생애주기비용 민감도 분석)

  • Koo, Bon-Min;Byun, Kuen-Joo;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.773-776
    • /
    • 2004
  • The so-called Life Cycle Cost (LCC) analysis on reinforced concrete bridge can provide useful information for initial design and maintenance plan of the RC bridge. This paper proposes an LCC prediction equation and a sensitivity analysis method for RC bridges. An LCC equation for the RC bridge which includes initial investment cost, maintenance cost, and demolition cost was derived and verified from the data for design and construction of an RC slab bridge. In order to solve uncertainty problem on actual discount rate and material characteristics in the analysis of LCC of concrete bridges, a sensitivity analysis method on the LCC using the Monte Carlo simulation technique was suggested.

  • PDF

A Study on Economic Analysis of LNG Fuel Propulsion Ships using Life Cycle Cost(LCC) Based on Combined Interest Rates and Sensitivity Analysis (복합이자율과 민감도분석에 기반한 LCC 기법에 의한 LNG 연료추진 선박 경제성 평가 사례 연구)

  • Hong, Jin Pyo;Kim, Su Yeong;Kim, Chwa Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.451-458
    • /
    • 2014
  • The purpose of this study is to compare the economics between a diesel propulsion vessel and a LNG fuel propulsion vessel through the analysis of the present value using the LCC(Life Cycle Cost) method. This study is also to judge the economics for long-term operation of a LNG fuel propulsion vessel as a result of analysis about the equivalent uniform annual cost. In particular, LCC method was strengthened by sensitivity analysis based on combined interest rate which is considering discount rate and inflation rate simultaneously.

A Model of Time Dependent Design Value Engineering and Life Cycle Cost Analysis for Apartment Buildings (공동주택의 시간의존적 설계VE 및 LCC분석 모델)

  • Seo, Kwang-Jun;Choi, Mi-Ra;Shin, Nam-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.6 s.28
    • /
    • pp.133-141
    • /
    • 2005
  • In the resent years, the importance of VE (value engineering) and LCC (life cycle cost) analysis for apartment building construction projects has been fully recognized. Accordingly theoretical models, guidelines, and supporting software systems were developed for the value engineering and life cycle cost analysis for construction management including large building systems. However, the level of consensus on VE and LCC analysis results is still low due to the lack of reliable data on maintenance. This paper presents time dependent LCC model based value analysis method for rational investment decision making and design alternative selection for construction of apartment building. The proposed method incorporates a time dependent LCC model and a performance evaluation technique by fuzzy logic theory to properly handle the uncertainties associated with statistics data and to analyze the value of alternatives more rationally. The presented time dependent VE and LCC analysis procedure were applied to a real world project, and this case study is discussed in the paper. The model and the procedure presented in this study can greatly contribute to design value engineering alternative selection, the estimation of the life cycle cost, and the allocation of budget for apartment building construction projects.

Application study of heat storage type GSHP system in Apartment building with central cooling and heating facilities using life cycle cost analysis (LCC 분석을 이용한 중앙공급식 공동주택의 수축열식 지열원 히트펌프시스템의 적용연구)

  • Lee, Sang-Hoon;Park, Jong-Woo;Cho, Sung-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1497-1502
    • /
    • 2009
  • The present study has been conducted economic analysis of heat storage type ground source heat pump system(HSGSHP) and normal ground source heat pump (GSHP) and central boiler system with individual air conditioning facility which are installed at the same building in the shared an apartment house. Cost items, such as initial construction cost, annual energy cost and maintenance cost of each system are considered to analyze life cycle cost (LCC) and simple payback period (SPP) with initial cost different are compared. The initial cost is a rule to the Government basic unit cost of production. LCC applied present value method is used to assess economical profit of both of them. Variables used to LCC analysis are prices escalation rate and interest rate mean values of during latest 10 years. The LCC result shows that HSGSHP (1,351,000,000won) is more profitable than central boiler system with individual air conditioning facility by 86.7% initial cost. And SPP appeared 8.0 year overcome the different initial cost by different annual energy cost.

  • PDF

Development of Regression Model to evaluate the indirect costs of Life-Cycle Costs (생애주기비용의 간접비용 산출을 위한 Regression Model의 개발)

  • 조효남;이종순;김충완;박경훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.150-156
    • /
    • 2004
  • Though the concept of Life-Cycle Cost (LCC) itself is not new, its effectiveness for planning, design, rehabilitation and maintenance/management of civil infrastructures is becoming increasingly recognized. For the decision problems as in the case of the LCC of plant facilities, equipments, bridge decks, pavements, etc., the Life-Cycle Cost Analysis (LCCA) is relatively simple, and thus its practical implementation is rather straightforward. However, when it comes to major infrastructures such as bridge, tunnels, underground facilities, etc., the LCCA problem becomes extremely complex because lack of cost data associated with various direct and indirect losses, and the absence of uncertainty data available for the assessment as well. As a result, the LCC studies have been largely limited only to those relatively simple LCCA problems of planning or conceptual design for making decisions. Accordingly, in the recent years, the researchers have pursued extensive studies on the LCC effectiveness mostly related to LCC models and frameworks for civil infrastructures. Moreover, recently the demand on the practical application of LCC effective decisions in design and maintenance is rapidly growing unprecedently in civil engineering practice. Indirction cost is very important on LCC formulation. But that is very difficult and complicate the estimation every LCC. The objective of this paper is to suggest efficient regression model for the estimation of indirect cost approach to the practical application of LCC for the design and rehabilitation of civil. infrastructures considering traffic, traffic network, detour condition, and workzone condition. In this paper, it performed the sensitivity analysis and correlation analysis of parameter for development of regression model of inflection cost.

  • PDF

A Study on the Design Value Analysis Model Using Probabilistic LCC Analysis of Water Supply System Project (확률적 LCC분석기법을 활용한 수도시설물의 설계VA모델에 관한 연구)

  • Jung Pyung-Ki;Seo Jong-Won;Lim Jong-Kwon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.181-193
    • /
    • 2004
  • A life cycle cost analysis model for public water supply systems should be different from the ones for other civil and architectural facilities as the operation and the maintenance cost of the water supply systems mainly come from the various mechanical systems and the pipeline systems of the collecting/treating/distributing facilities. This paper presents a cost classification scheme and a probabilistic life cycle cost analysis (PLCCA) model for public water supply systems. A value analysis (VA) procedure that is well suited for practical purposes is also presented. The presented probabilistic life cycle model and the value analysis procedure were applied to a real world project, and this case study is discussed in the paper. The model and the procedure presented in this study can greatly contribute to the value-oriented design alternative selection, the estimation of the maintenance cost, and the allocation of budget for water supply system construction projects.