• Title/Summary/Keyword: life- time prediction

Search Result 582, Processing Time 0.031 seconds

An improved regularized particle filter for remaining useful life prediction in nuclear plant electric gate valves

  • Xu, Ren-yi;Wang, Hang;Peng, Min-jun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2107-2119
    • /
    • 2022
  • Accurate remaining useful life (RUL) prediction for critical components of nuclear power equipment is an important way to realize aging management of nuclear power equipment. The electric gate valve is one of the most safety-critical and widely distributed mechanical equipment in nuclear power installations. However, the electric gate valve's extended service in nuclear installations causes aging and degradation induced by crack propagation and leakages. Hence, it is necessary to develop a robust RUL prediction method to evaluate its operating state. Although the particle filter(PF) algorithm and its variants can deal with this nonlinear problem effectively, they suffer from severe particle degeneracy and depletion, which leads to its sub-optimal performance. In this study, we combined the whale algorithm with regularized particle filtering(RPF) to rationalize the particle distribution before resampling, so as to solve the problem of particle degradation, and for valve RUL prediction. The valve's crack propagation is studied using the RPF approach, which takes the Paris Law as a condition function. The crack growth is observed and updated using the root-mean-square (RMS) signal collected from the acoustic emission sensor. At the same time, the proposed method is compared with other optimization algorithms, such as particle swarm optimization algorithm, and verified by the realistic valve aging experimental data. The conclusion shows that the proposed method can effectively predict and analyze the typical valve degradation patterns.

A Study on the Estimation of the Fatigue Life Using the Stress Generated Models in the Steel Railroad Bridges (강철도교의 응력발생모형을 이용한 피로수명 추정에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Lee, Seong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.19-29
    • /
    • 1996
  • In this paper, it is presumed that the stress time history was generated by simulation method and investigated compatibility in regard to the reappearance of stress time history. In this procedure, the identified frequency distribution of stress range of the steel railroad bridge varies with the rational values of cut off point and bar width. Thus, we show variable aspect of the equivalent stress range results from change of cut off point and bar width. In addition, we analyze the variable of RMC and RMS model due to the cut off point and bar width of the measured stress history which influencs the prediction of fatigue life in the steel railroad bridge. The simulated stress time history is carried out by the superposition method incorporating the vertical load with rotation moment obtained from the Hermition interpolation function, and compared with developing stress results from measured maxi mum stress. Through this study, we can estimate the remaining fatigue life from a safety point of view and comparative accuracy.

  • PDF

Prediction of Service Life of a Respirator Cartridge by the Occupational Environment -Simulation of Breakthrough Curve for Respirator Cartridge and Sampling Tube- (작업현장의 환경조건에 따른 방독마스크 정화통의 수명예측 -모사에 의한 정화통과 샘플관의 파과시간-)

  • 김덕기;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.89-95
    • /
    • 1996
  • To predict the service life of an organic vapor respirator cartridge, the breakthrough curve of respirator was simulated using a fixed-bed adsorption model and compared with that of sampling tube. And the effects of bed porosity, length to diameter ratio and flow rate of the sampling tube were studied. The life time of respirator cartridge was increased with the decrease of particle size and bed porosity. And the breakthrough time of sampling tube was affected by the flow rate, however not by the length to diameter ratio. The 10% breakthrough time of the sampling tube was corresponded with that of cartridge.

  • PDF

Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model

  • Kim, JungHoon;Zi, Goangseup;Van, Son-Nguyen;Jeong, MinChul;Kong, JungSik;Kim, Minsung
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.443-457
    • /
    • 2011
  • The loss of strength in a structure as a result of cyclic loads over a period of life time is an important phenomenon for the life-cycle analysis. Service loads are accentuated at the areas of stress concentration, mainly at the connection of components. Structural components unavoidably are affected by defects such as surface scratches, surface roughness and weld defects of random sizes, which usually occur during the manufacturing and handling process. These defects are shown to have an important effect on the fatigue life of the structural components by promoting crack initiation sites. The value of equivalent initial flaw size (EIFS) is calculated by using the back extrapolation technique and the Paris law of fatigue crack growth from results of fatigue tests. We try to analyze the effect of EIFS distribution in a multiple site damage (MSD) specimen by using the extended finite element method (XFEM). For the analysis, fatigue tests were conducted on the centrally-cracked specimens and MSD specimens.

A study on Accelerated Life Prediction of Gas Welded joint of STS301L (1. Plug and Ring type) (STS301L 가스용접이음재의 가속수명에측에 관한 연구 (1. Plug and Ring type))

  • Baek, Seung-Yeb;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1355-1360
    • /
    • 2008
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of an railroad car and vehicles structure. However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weldment, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, ${\Delta}P-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test (ALT) is conducted. From the experimental results, an acceleration model is derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistic reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

  • PDF

Reliability Assessment and Accelerated Life Prediction of Gas Welded Joint in the Rail Road Car Body (1. Plug and Ring Type) (철도차량 차체 가스용접 이음재의 가속수명예측과 신뢰도 평가)

  • Baek, Seung-Yeb
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.77-85
    • /
    • 2010
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of a railroad car and vehicles structure.However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weld, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, $({\Delta}{\sigma}_a)_R-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test(ALT) was conducted. From the experimental results, an acceleration model was derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistic reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

A Study on Accelerated Life Prediction Automation of Gas Welded Joint of STS301L (Plug and Ring Type) (STS301L 가스용접이음재의 가속수명예측 자동화에 관한 연구 (Plug and Ring Type))

  • Baek, Seung-Yeb;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of an railroad car and vehicles structure. However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weldment, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, ${\Delta}-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test (ALT) is conducted. From the experimental results, an acceleration model is derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistical reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

Statistical Life Prediction on IASCC of Stainless Steel for PWR Core Internals (가압형 경수로 스테인리스강 내부 구조물의 조사유기 응력부식균열에 대한 통계적 수명 예측)

  • Kim, Sung-Woo;Hwang, Seong-Sik;Lee, Yeon-Ju
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.583-589
    • /
    • 2012
  • This work is concerned with a statistical approach to the life prediction on irradiation-assisted stress corrosion cracking (IASCC) of stainless steel (SS) for core internals of a pressurized water reactor (PWR). The previous results of the time-to-failure of IASCC measured on neutron-irradiated stainless steel components were statistically analyzed in terms of stress and irradiation. The accelerating life testing model of IASCC of cold worked Type 316 SS was established based on an inverse power model with two stress-variables, the applied stress and irradiation dose. Considering the variation of the yield strength and applied stress with the irradiation dose in the model, the remaining life of the baffle former bolt was statistically predicted during operation under complex environments of stress and irradiation.

A Study on The Factors which Influence on Evaluating Service Life for Carbonation of RC Structures (철근콘크리트 구조물의 탄산화 내구수명 산정에 미치는 영향요인에 관한 문헌적 연구)

  • Yang, Jae-Won;Yoon, Sun-Young;Cho, Hyung-Kyu;Song, Hun;Lee, Han-Seung
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.103-110
    • /
    • 2010
  • Carbonation is one of the major deterioration factors for concrete. So. lots of researchers have proposed the equations for determining carbonated depth and the initial time of steel corrosion due to carbonation to predict the service life of concrete structures. However, there are large gaps among the equations for predicting carbonation because each researcher has different considering factors to predict carbonation depth. So, in this study, we calculated the deviations of the proposed equations for carbonation, and we calculated each researcher different corrosion initiation time. However, it has a lot of deviation. Therefore, we evaluated the probability of steel corrosion considering each deviation using MCS, an analysis method based on probability theory. In the results, we have proposed much advanced information for determining service life of reinforced concrete structures due to carbonation.

A Study on Prediction of Die Life of Warm Forging by Wear(I) -Construction of Die Wear Model- (마멸에 의한 온간단조의 금형수명 예측에 관한 연구(I) -금형 마멸 모델의 정립-)

  • 강종훈;박인우;제진수;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.88-93
    • /
    • 1998
  • The service life of tools in metal forming process is to a large extent limited by wear, fatigue fracture and plastic deformation. In warm forging processes wear is the predominant factor for operating lives of tools. To predict tool life by wear, Archard's wear model is generally applied. Usually hardness of die is considered to be a function of temperature in Archard's wear model. But hardness of die is a function of not only temperature but also operating time of die. To consider softening of die by repeated operations, it is necessary to express hardness of dies by a function of temperatures and operating time. By experiment of reheating of dies, die softening curves were obtained. Finally modified Archard's wear model in which hardness of die was expressed as a function of main tempering curve was proposed.

  • PDF