• 제목/요약/키워드: life cycle impact assessment

검색결과 248건 처리시간 0.026초

식품산업에 있어서 포장두부의 전과정평가 사례연구 (Case Study on the Life Cycle Assessment of the Packaged Bean-curd in Food Industry)

  • 황태연;윤성이
    • 한국유기농업학회지
    • /
    • 제15권3호
    • /
    • pp.277-290
    • /
    • 2007
  • This study has been analyzed an execution example of the life cycle assessment on the packaged bean-curd of P company, the first case of the regular life cycle assessment on the processed foods in Korea and considered on the significance and directions of the life cycle assessment on the foods. It is possible to divide the potential environmental impact through the life cycle of the bean-curd into six categories and analyze the environmental impact on the production, use and disposal phases of the product. The values of each environmental impact have been quantified from the strength of the potential impact fur the corresponding category of impact. In the future, it is expected that the result of the lift cycle assessment will be increasingly used fur many areas such as Climate Change Convention and ISO22000, etc. and it is required to promote a project to make database through the assessment on the individual corps or types of businesses for it from now on.

  • PDF

LCA 기법을 이용한 소맥분 생산 공정의 환경 영향 평가 (Environmental Impacts Assessment of the Wheat Flour Production Process Using the Life Cycle Assessment Method)

  • 추덕성;권혁구;김종규;이장훈
    • 한국환경보건학회지
    • /
    • 제34권1호
    • /
    • pp.62-69
    • /
    • 2008
  • The life cycle assessment method for environmental impact assessment was used, in this study, to assess the production process of wheat flour which is the most important material in the food industry. Environmental impact assessments were compared between that of the Ministry of Environment, Republic of Korea (method I) with that of the Ministry of Commerce, Industry and Energy (method II). Life cycle inventories (LCI) was performed using internal and external databases and the production statistics database of company S. The procedure of life cycle impact assessment (LCIA) was followed in terms of classification, characterization, normalization and weighting to identify the key issues. The impact categories of method I were divided into 8 categories with consideration of : abiotic resources depletion, global warming, ozone depletion, photochemical oxidant creation, acidification and eutrophication. The impact categories of method II were divided into 10 categories with consideration of: abiotic resources depletion, global warming, ozone depletion, photochemical oxidant creation, acidification, eutrophication, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity.

Applying a Life-Cycle Assessment to the Ultra Pure Water Process of Semiconductor Manufacturing

  • Tien, Shiaw-Wen;Chung, Yi-Chan;Tsai, Chih-Hung;Yang, Yung-Kuang;Wu, Min-Chi
    • International Journal of Quality Innovation
    • /
    • 제6권3호
    • /
    • pp.173-189
    • /
    • 2005
  • A life-cycle assessment (LCA) is based on the attention given to the environmental protection and concerning the possible impact while producing, making, and consuming products. It includes all environmental concerns and the potential impact of a product's life cycle from raw material procurement, manufacturing, usage, and disposal (that is, from cradle to grave). This study assesses the environmental impact of the ultra pure water process of semiconductor manufacturing by a life-cycle assessment in order to point out the heavy environmental impact process for industry when attempting a balanced point between production and environmental protection. The main purpose of this research is studying the development and application of this technology by setting the ultra pure water of semiconductor manufacturing as a target. We evaluate the environmental impact of the Precoat filter process and the Cation/Anion (C/A) filter process of an ultra pure water manufacturing process. The difference is filter material used produces different water quality and waste material, and has a significant, different environmental influence. Finally, we calculate the cost by engineering economics so as to analyze deeply the minimized environmental impact and suitable process that can be accepted by industry. The structure of this study is mainly combined with a life-cycle assessment by implementing analysis software, using SimaPro as a tool. We clearly understand the environmental impact of ultra pure water of semiconductor used and provide a promotion alternative to the heavy environmental impact items by calculating the environmental impact during a life cycle. At the same time, we specify the cost of reducing the environmental impact by a life-cycle cost analysis.

Life cycle impact assessment of the environmental infrastructures in operation phase: Case of an industrial waste incineration plant

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Environmental Engineering Research
    • /
    • 제22권3호
    • /
    • pp.266-276
    • /
    • 2017
  • A life cycle impact assessment was applied in an industrial waste incineration plant to evaluate the direct and indirect environmental impacts based on toxicity and non-toxicity categories. The detailed life cycle inventory of material and energy inputs and emission outputs was compiled based on the realistic data collected from a local industrial waste incineration plant, and the Korean life cycle inventory and ecoinvent database. The functional unit was the treatment of 1 tonne of industrial waste by incineration and the system boundary included the incineration plant and landfilling of ash. The result on the variation of the impact by the unit processes showed that the direct impact was decreased by 79.3, 71.6, and 90.1% for the processes in a semi dry reactor, bag filter, and wet scrubber, respectively. Considering the final impact produced from stack, the toxicity categories comprised 91.7% of the total impact. Among the toxicity impact categories, the impact in the eco-toxicity category was most significant. A separate estimation of the impact due to direct and indirect emissions showed that the direct impact was 97.7% of the total impact. The steam recovered from the waste heat of the incineration plant resulted in a negative environmental burden.

LCA에 기초한 패시브 공동주택의 친환경성 평가에 관한 연구 (A Study on the Environmental Impact Assessment for Passive Apartment based on Life Cycle Assessment)

  • 공유리;태성호;송수원;노승준
    • 한국건축시공학회지
    • /
    • 제14권6호
    • /
    • pp.537-543
    • /
    • 2014
  • 본 연구는 전과정 평가에 기초한 패시브 공동주택의 친환경성을 평가하는 것을 목적으로 한다. 이를 위해 LCA에 관한 이론적 고찰을 토대로 전과정 단계별 물량정보 및 에너지 사용량 데이터를 구축하였다. 또한, 국가 LCI DB에 기초한 원단위 데이터베이스를 활용하여 산성화, 부영양화, 지구온난화, 자원고갈, 오존층파괴, 광화학적산화물에 대한 환경영향을 평가 분석하였다. 그 결과 패시브 공동주택이 일반 공동주택보다 6대 환경영향에서 환경적으로 우수한 것으로 평가 되었으며 이는 에너지 소비량의 절감이 운영단계에서 6대 환경영향을 큰 폭으로 감소시켰기 때문인 것으로 분석되었다. 이로 인해 건설단계에서의 환경영향의 비중이 상대적으로 증가됨에 따라 기존 에너지 절감 중심의 친환경 기술의 적용과 함께 투입물량의 절감 및 환경영향이 적은 친환경 건축재료의 적용을 통해 전 생애 주기 관점에서 친환경 기술의 적용이 필요할 것으로 사료된다.

LCA기법을 이용한 하수처리장의 환경영향 평가 (Environmental Impact Assessment of Wastewater Treatment Plant Using Life Cycle Assessment)

  • 박광호;황용우
    • 상하수도학회지
    • /
    • 제19권6호
    • /
    • pp.809-818
    • /
    • 2005
  • Comprehensive environmental impact of wastewater treatment plant (WWTP) was evaluated with life cycle assessment (LCA) methodology based on ISO 14040. As environmental impact assessment method, Eco-indicator 95 and Eco-indicator 99 were used. The studied WWTP had a capacity of $100,000m^3/d$, and its life span of civil structure and main machinery was designed to 40 years and 20 years, respectively. As the results, more than 95% of environmental impact was produced by using electricity and chemical use in operation stage. In construction stage, temporary shoring facility was the major reason of environmental load, however, its impact was much less than those by operation utilities.

간략화 전과정 평가(S-LCA) 기법을 이용한 전동차 구체의 환경성 평가 (Environmental Impact Assessment of the Carbody of a Electric Motor Unit(EMU) Using Simplified Life Cycle Assessment(S-LCA))

  • 이재영;목재규;정인태;김용기
    • 한국철도학회논문집
    • /
    • 제8권6호
    • /
    • pp.520-524
    • /
    • 2005
  • It is consequential to reduce the environmental impact of a product for sustainable development in 21st Century. In the field of transportation, especially, the technological market concerned about reduction and assessment of greenhouse gas emission is expected to be extended. The LCA gas been esteemed and utilized as a realistic alternative greenhouse gas emission is expected to be extended. The LCA has been esteemed and utilized as a realistic alternative to improve the environment by the assessment of environmental impacts. In this study, simplified life cycle assessment(S-LCA), was performed to analyze the environmental impacts quantitatively, which were produced through the life cycle of a electric motor unit(EMU). The object of the present work is rth investigate main parameters of environmental impacts and to establish the plans to improve the environment impact of EMU. As a result of quantitative assessment for environmental impact and manufacturing, the EMU carbody made of SUS showed acidification(AD) and marine water aquatic ecotoxicity(MAET) the most, while that made of Mild showed high impact of global warning(GW) and abiotic resources depletion(ARD). For the SUS EMU, the high AD and MAET impact is occurred by the discharged pollutants during acid-washing process. Also, high value of GW and ARD for Mild EMU is resulted from the consumption of iron ore, coal and crude oil during manufacturing. Therefore, the environment impact of carbody would be decreased by enhancing of energy efficiency and the lightening the weight of it.

겨울 유채의 환경성 평가를 위한 전과정평가(LCA) 방법론 (Methodology of Life Cycle Assessment(LCA) for Environmental Impact Assessment of Winter Rapeseed in Double-cropping System with Rice)

  • 남재작;옥용식;최봉수;임송택;정용수;장영석;양재의
    • 한국환경농학회지
    • /
    • 제27권2호
    • /
    • pp.205-210
    • /
    • 2008
  • Life cycle assessment(LCA) is acknowledged as a valuable tool to quantify the environment impact of agricultural practice as well as final product(biodiesel) considering whole life cycle of the target product. As a preliminary research of LCA study for rapeseed(Brassica napus L.) biodiesel, the methodological issues which have to be regarded with high priority were dealt with. No life cycle inventory(LCI) based on local data are currently available for LCA of rapeseed cultivation, crushing, and conversion to rapeseed methyl ester(RME) in Korea. In this paper, the life cycle of rapeseed and methodological factors which have to be measured for building LCI of each process are provided and discussed, which are including seed, fertilizer, energy use in rapeseed cultivation environment; and crushing, RME conversion, and transportation in biodiesel production.

생활폐기물(生活廢棄物) 소각(燒却) 처리공정(處理工程)의 전과정(全科程) 평가(平價)에 의한 비교(比較) (Comparison of the Incineration Processes of Domestic Wastes Based on Life Cycle Assessment)

  • 정우정;이상돈;김동수
    • 환경영향평가
    • /
    • 제14권6호
    • /
    • pp.443-453
    • /
    • 2005
  • For the purpose of the comparative environmental estimation of the incineration processes for domestic wastes, environmental impacts for several incineration processes for one ton of domestic wastes have been estimated by employing life cycle assessment as the environmental impact assessment method. The scheme of minimum production of environmental pollutants has been considered for three different incineration processes. The evaluation for latent influence on environment was carried out by using CML(Center of Environmental Science) method which was developed by University of Leyden in Netherlands based on the equivalency factor suggested by Korea Accreditation Board. The result of life cycle assessment has showed that the total cost analysis according to the amount of incinerating waste was dependent on the operating conditions of incineration process. In addition, the annual running cost for the incineration of one ton of wastes was estimated to be negatively dependent on the amount of wastes. The degree of environmental pollution was mainly due to the kinds of the wastes rather than by the amount of wastes.

LCA 기법을 활용한 합류식 하수도 월류수 사업의 잠재적 환경영향 저감효과 분석 (An Analysis of Potential Environmental Impact Reduction for Combined Sewer Overflow Project using a LCA Methodology)

  • 조현정;송장환;황용우;박지형
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.885-892
    • /
    • 2011
  • In this study, LCA(Life Cycle Assessment) on 'Saemangum CSO Project' was carried out to evaluate environmental impact which occurred during the construction and operation periods and the potential environmental impact reduction was analyzed by comparing production and reduction level of pollution loads. LCA was conducted out according to the procedure of ISO14040 which suggested Goal and Scope Definition, Life Cycle Inventory Analysis, Life Cycle Impact Assessment and Interpretation. In the Goal and Scope Definition, the functional unit was 1 m3 of CSO, the system boundary was construction and operation phases, and the operation period was 20 years. For the data collection and inventory analysis, input energies and materials from civil, architecture, mechanical and electric fields are collected from design sheet but the landscape architecture field is excepted. LCIA(Life Cycle Impact Assessment) was performed following the procedure of Eco-Labelling Type III under 6 categories which were resource depletion, eutrophication, global warming, ozone-layer destruction, and photochemical oxide formation. In the result of LCA, 83.4% of environmental impact occurred in the construction phase and 16.6% in the operation phase. Especially 78% of environmental impact occurred in civil works. The Global warming category showed the highest contribution level in the environmental impact categories. For the analysis on potential environmental impact reduction, the reduction and increased of environmental impact which occurred on construction and operation phases were compared. In the case of considering only the operation phase, the result of the comparison showed that 78% of environmental impact is reduced. On the other hand, when considering both the construction and operation phases, 50% of environmental impact is increase. Therefore, this study showed that eco-friendly material and construction method should be used for reduction of environmental impact during life cycle, and it is strongly necessary to develop technology and skills to reduce environmental impact such as renewable energies.