• Title/Summary/Keyword: life cycle assessment

Search Result 719, Processing Time 0.143 seconds

An integrated monitoring system for life-cycle management of wind turbines

  • Smarsly, Kay;Hartmann, Dietrich;Law, Kincho H.
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.209-233
    • /
    • 2013
  • With an annual growth rate of about 30%, wind energy systems, such as wind turbines, represent one of the fastest growing renewable energy technologies. Continuous structural health monitoring of wind turbines can help improving structural reliability and facilitating optimal decisions with respect to maintenance and operation at minimum associated life-cycle costs. This paper presents an integrated monitoring system that is designed to support structural assessment and life-cycle management of wind turbines. The monitoring system systematically integrates a wide variety of hardware and software modules, including sensors and computer systems for automated data acquisition, data analysis and data archival, a multiagent-based system for self-diagnosis of sensor malfunctions, a model updating and damage detection framework for structural assessment, and a management module for monitoring the structural condition and the operational efficiency of the wind turbine. The monitoring system has been installed on a 500 kW wind turbine located in Germany. Since its initial deployment in 2009, the system automatically collects and processes structural, environmental, and operational wind turbine data. The results demonstrate the potential of the proposed approach not only to ensure continuous safety of the structures, but also to enable cost-efficient maintenance and operation of wind turbines.

Life Cycle Assessment of Timber Arch-Truss Bridge by Using Domestic Pinus rigida Glued-Laminated Timber (리기다소나무 구조용 집성재를 활용한 아치 트러스 목조교량의 전과정평가)

  • Son, Whi-Lim;Park, Joo-Saeng;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • This study carried out life cycle assessment for evaluating environmental impacts of timber Arch-Truss bridge by using domestic Pinus rigida Miller glued-laminated timber throughout life cycle such as extraction, manufacturing, transportation, construction, use, dismantlement, transportation of waste, disposal and recycling. The life cycle GHG (GreenHouse Gas) emissions of the target bridge are 192.56 ton $CO_2$ eq. in 50 years. Especially, the life cycle GHG emissions of concrete used in the target bridge are 82.84 ton $CO_2$ eq. which accounts for 53.02% of the GWP (Global Warming Potential) in extraction and manufacturing stages. The target bridge is constructed of $116.57m^3$ of domestic Pinus rigida Miller glued-laminated timber and used timber has stored 104.72 ton $CO_2$. If an effect of carbon storage in timber is applied to the total GHG emissions of the target bridge, the GHG emissions can be reduced by 54.38%. In the case of substitution effect, if domestic Pinus rigida Miller glued-laminated timber replaces steel manufactures used in other bridge which has the same structure and life span as the target bridge, the GHG emissions in extraction and manufacturing stages can be reduced by 10.26% to 23.91%.

Life Cycle Analysis and Feasibility of the Use of Waste Cooking Oil as Feedstock for Biodiesel

  • Gahlaut, Aradhana;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.162-178
    • /
    • 2015
  • Petroleum based fossil fuels used to power most processes today are non-renewable fuels. This means that once used, they cannot be reproduced for a very long time. The maximum combustion of fossil fuels occurs in automobiles i.e. the vehicles we drive every day. Thus, there is a requirement to shift from these non-renenewable sources of energy to sources that are renewable and environment friendly. This is causing the need to shift towards more environmentally-sustainable transport fuels, preferably derived from biomass, such as biodiesel blends. These blends can be made from oils that are available in abundance or as waste e.g. waste cooking oil, animal fat, oil from seeds, oil from algae etc. Waste Cooking Oil(WCO) is a waste product and so, converting it into a transportation fuel is considered highly environmentally sustainable. Keeping this in mind, a life cycle assessment (LCA) was performed to evaluate the environmental implications of replacing diesel fuel with WCO biodiesel blends in a regular Diesel engine. This study uses Life Cycle Assessment (LCA) to determine the environmental outcomes of biodiesel from WCO in terms of global warming potential, life cycle energy efficiency (LCEE) and fossil energy ratio (FER) using the life cycle inventory and the openLCA software, version 1.3.4: 2007 - 2013 GreenDelta. This study resulted in the conclusion that the biodiesel production process from WCO in particular is more environmentally sustainable as compared to the preparation of diesel from raw oil, also taking into account the combustion products that are released into the atmosphere as exhaust emissions.

Knowledge-based Approximate Life Cycle Assessment System in a Collaborative Design Environment (협업설계 환경에서의 지식기반 근사적 전과정평가 시스템)

  • 박지형;서광규;이석호;이영명
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.877-880
    • /
    • 2003
  • In a competitive and globalized business environment, the need for the green products becomes stronger. To meet these trends, the environmental assessment besides delivery, cost and quality of products should be considered as an important factor in new product development phase. In this paper. a knowledge-based approximate life cycle assessment system (KALCAS) for the collaborative design environment is developed to assess the environmental impacts in context of product concept development. It aims at improving the environmental efficiency of the product using artificial neural networks consisting of high-level product attributes and LCA results. The overall framework of the collaborative environment including KALCAS is proposed. This architecture uses the CO environment to allow users on a wide variety of platforms to access the product data and other related information. It enables us to trade-off the evaluation results between the objectives of the product development including the approximate environmental assessment in the collaborative design environment.

  • PDF

Life Cycle Assessment of Ethanol Production Process Based on Catalytic Reaction (촉매반응에 의한 에탄올 생산공정의 전 과정 평가)

  • Chung, Yonsoo;Hwang, Ilhoon;Yeo, Yeong-Koo;Joo, Oh-Shim;Jung, Kwang-Deog
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.323-327
    • /
    • 2006
  • In this paper, the methodology of life-cycle assessment was applied to an ethanol production process based on catalytic reaction. The environmental performance of the process was quantified and compared with that of the fermentation process. The purpose of the assessment was to develop design guidelines for the environmentally better ethanol production. The assessment was carried only on the stages of raw material acquisition through ethanol manufacture since it was assumed that ethanol from two processes had the same environmental impacts through its use and discard. The inventory analysis of the catalytic process resulted in that carbon dioxide from methanol production was the major environmental impact. The impact assessment showed that the fermentation process was environmentally better than the catalytic one. Suggestions for environmental improvement of the catalytic process were prepared based on the assessment results.

Evaluation of monthly environmental loads from municipal wastewater treatment plants operation using life cycle assessment

  • Piao, Wenhua;Kim, Ye-jin
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.284-290
    • /
    • 2016
  • Life cycle assessment (LCA) methodology can be used to assess impacts on the environment that might be generated during treatment of wastewater and sludge treatment. In this work, LCA methodology was suggested to evaluate monthly environmental impact of wastewater treatment plants (WWTPs). Two field scale WWTPs, A2/O process and conventional activated sludge process (CAS), were selected as target plants and the operational data were collected from those plants. As the function units, the unit volume of treated wastewater of $1m^3$ and 1 kg T-N eq. removed were selected. The environmental effect of target WWTPs operation were assessed as impact categories such as global warming potential, eutrophication potential, and so on. From monthly profiles of each index, it was shown that the environmental impact of WWTPs has seasonal patterns influenced by the influent flow rate variation causing higher impacts in winter than summer. This is due to the fact that there were no significant increase in the electricity consumption and chemical usage during the summer while the treated volume of wastewater was increased.

Life Cycle Assessment and Eco-efficiency Analysis for the Resource-circulation Network of Waste Heat Generated from Industrial Process (공정폐열의 자원순환 네트워크 구성을 위한 전과정 평가 및 생태효율성 분석)

  • Shin, Choon-Hwan;Park, Do-Hyun;Kim, Ji-Won
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.281-289
    • /
    • 2013
  • For the purpose of evaluating the eco-efficiency(EE) on surplus heat generated from industrial process, techniques of life cycle assessment are adopted in this study. Because it can be indicated both environmental impacts and economic benefits, EE is well known as a useful tool for symbiosis network on the sustainable development of new projects and businesses. To evaluate environmental impacts, the categories were divided into two areas of resource depletion and global warming potential. It can be seen that environmental impact increased a little but much higher economic benefit on the company, environmental performance and economic value were improved on the apartment by the district heating, respectively. In result, eco-industrial park(EIP) project on surplus heat should be found sustainable new business because the EE was in the area of fully positively eco-efficiency and, moreover resource depletion was taken place than the reduction of greenhouse gas.

A Quantitative Analysis of Greenhouse Gas Emissions from the Danish Seine Fishery using Life Cycle Assessment (전과정평가 방법에 의한 외끌이 대형기선저인망 어업의 온실 가스 배출량의 정량적 분석)

  • Lee, Jihoon;Lee, Chun-Woo;Kim, Jieun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.2
    • /
    • pp.200-206
    • /
    • 2015
  • The fishing industry has a negative effect on the environment due to greenhouse gas (GHG) emissions with the high use of fossil fuels, the destruction of underwater ecosystems by bottom trawls, reduction in resources by fishing, and altered ecosystem diversity. GHG emissions from fisheries were discussed at the Canc$\acute{u}$n meeting in Mexico in 1992 and are part of the Kyoto protocol in 2005. However, few studies have investigated the GHG emissions from Korean fisheries. To find a way to reduce GHG emissions from fisheries, quantitative analysis of GHG emissions from the Korean fishery industry is needed. Therefore, this study investigated the GHG emissions from the Korean Danish seine fishery using the life cycle assessment (LCA) method. The system boundary and input parameters for each process level are defined for the LCA analysis. The fuel-use coefficient of the fishery is also calculated. The GHG emissions from the representative fish caught by the Danish seine fishery are considered and the GHG emissions for the edible weight of fishes are calculated, considering consumption in different areas and different slaughtering processes. The results will help to understand the GHG emissions from Korean fisheries.

Life Cycle Assessment of CdTe Photovoltaic System (CdTe 태양광 발전 시스템의 전과정평가)

  • Kim, Yeunhee;Huh, Jinho;Jeong, Jaewoo;Kang, Jeongrim;Choi, Jongdoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • The conventional energy-production system by burning fossil fuels releases many pollutants and carbon dioxide($CO_2$) to the environment. Therefore, many countries pay attention to new and renewable energy and invest in the development of these new technologies for the future energy security. One of the most promising of these technologies is a photovoltaic system. In this study, Life Cycle Assessment(LCA) is carried out to analyse the environmental issues(e.g. global warming, abiotic resource depletion) of CdTe photovoltaic system. The spatial and temporal scope of this study was set in Korea during 2004~2005. We assumed that CdTe photovoltaic system was installed in Mokpo where the amount of solar irradiation was higher than other places in Korea. Based on the present data and some assumptions, greenhouse gas emission was 39.2g $CO_2$-eq./kWh. Therefore the electricity produced by CdTe photovoltaic system is more environmentally friendly than the conventional power generation system.

  • PDF

Life Cycle Costing through Operating Number Control of Air Conditioning Systems in Office Buildings (사무소 건축물의 공조시스템 대수제어 여부에 따른 LCC 분석)

  • Park, Ryul;Jung, Soon-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.981-988
    • /
    • 2002
  • Generally, the term "energy saving is economical" is appropriate for the national view point and for design and assessment of one system, but not appropriate when choosing the system by comparing alternative systems in the early design step. Sometimes, non-energy saving system is more economical than energy saving system because of the price of electricity, gas or oil, which are used for operating the air conditioning system. Therefore, when designing the system, we should consider the efficient alternatives through economic assessment of energy saving method. However, research on non-operating number control of the system is not sufficient because it is more common to use operating number control of the system for most economic assessment of air conditioning system. For this reason, this research can provide the economics through operating number control as basic design data. The data obtained through assesment of Life Cycle Cost based on amount of yearly energy use, were produced by system simulation of HASP/ACLD/8501 and HASP/ACSS/8502 for six alternative heating/cooling systems based on constant air volume conditioning system, which is widely used for medium and large office buildings in Busan.