• Title/Summary/Keyword: lidar data

Search Result 340, Processing Time 0.021 seconds

Extraction of Geometric Components of Buildings with Gradients-driven Properties

  • Seo, Su-Young;Kim, Byung-Guk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.723-733
    • /
    • 2009
  • This study proposes a sequence of procedures to extract building boundaries and planar patches through segmentation of rasterized lidar data. Although previous approaches to building extraction have been shown satisfactory, there still exist needs to increase the degree of automation. The methodologies proposed in this study are as follows: Firstly, lidar data are rasterized into grid form in order to exploit its rapid access to neighboring elevations and image operations. Secondly, propagation of errors in raw data is taken into account for in assessing the quality of gradients-driven properties and further in choosing suitable parameters. Thirdly, extraction of planar patches is conducted through a sequence of processes: histogram analysis, least squares fitting, and region merging. Experimental results show that the geometric components of building models could be extracted by the proposed approach in a streamlined way.

Performance Improvement of Pedestrian Detection using a GM-PHD Filter (GM-PHD 필터를 이용한 보행자 탐지 성능 향상 방법)

  • Lee, Yeon-Jun;Seo, Seung-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.150-157
    • /
    • 2015
  • Pedestrian detection has largely been researched as one of the important technologies for autonomous driving vehicle and preventing accidents. There are two categories for pedestrian detection, camera-based and LIDAR-based. LIDAR-based methods have the advantage of the wide angle of view and insensitivity of illuminance change while camera-based methods have not. However, there are several problems with 3D LIDAR, such as insufficient resolution to detect distant pedestrians and decrease in detection rate in a complex situation due to segmentation error and occlusion. In this paper, two methods using GM-PHD filter are proposed to improve the poor rates of pedestrian detection algorithms based on 3D LIDAR. First one improves detection performance and resolution of object by automatic accumulation of points in previous frames onto current objects. Second one additionally enhances the detection results by applying the GM-PHD filter which is modified in order to handle the poor situation to classified multi target. A quantitative evaluation with autonomously acquired road environment data shows the proposed methods highly increase the performance of existing pedestrian detection algorithms.

Analysis of Traversable Candidate Region for Unmanned Ground Vehicle Using 3D LIDAR Reflectivity (3D LIDAR 반사율을 이용한 무인지상차량의 주행가능 후보 영역 분석)

  • Kim, Jun;Ahn, Seongyong;Min, Jihong;Bae, Keunsung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1047-1053
    • /
    • 2017
  • The range data acquired by 2D/3D LIDAR, a core sensor for autonomous navigation of an unmanned ground vehicle, is effectively used for ground modeling and obstacle detection. Within the ambiguous boundary of a road environment, however, LIDAR does not provide enough information to analyze the traversable region. This paper presents a new method to analyze a candidate area using the characteristics of LIDAR reflectivity for better detection of a traversable region. We detected a candidate traversable area through the front zone of the vehicle using the learning process of LIDAR reflectivity, after calibration of the reflectivity of each channel. We validated the proposed method of a candidate traversable region detection by performing experiments in the real operating environment of the unmanned ground vehicle.

Improvement of interpretability for color aerial imagery by combining shadow effects correction and Lidar data (Lidar 자료와 그림자 보정을 통한 컬러항공사진 판독력 향상)

  • Sohn, Hong-Gyoo;Yun, Kong-Hyun
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2003.09a
    • /
    • pp.177-181
    • /
    • 2003
  • 최근 고해상도의 영상과 컬러항공영상의 출현과 더불어 도심지역의 지물 지모에 대한 상세한 묘사가 가능해지고 있다. 하지만 도심지역의 지물 지모의 복잡성으로 인하여 지물의 추출이 쉽지 않다. 특히, 건물에 의한 가림, 그림자에 의한 정보 왜곡 등의 발생으로 지형정보 추출의 어려움을 겪고 있다. 건물에 의한 폐색은 다른 위치에서 촬영을 하므로서 보정을 할 수 있지만 그림자에 의한 영향은 촬영위치에 상관없이 항상 발생한다. 본 연구에서는 도심지역에서 촬영한 컬러항공사진에서 그림자에 의한 정보 왜곡을 LIDAR 자료와 수치지도를 이용하여 보다 자동화된 과정으로 처리하므로서 그 판독력을 증대시키고자 한다.

  • PDF

Extraction of the Tree Regions in Forest Areas Using LIDAR Data and Ortho-image (라이다 자료와 정사영상을 이용한 산림지역의 수목영역추출)

  • Kim, Eui Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.27-34
    • /
    • 2013
  • Due to the increased interest in global warming, interest in forest resources aimed towards reducing greenhouse gases have subsequently increased. Thus far, data related to forest resources have been obtained, through the employment of aerial photographs or satellite images, by means of plotting. However, the use of imaging data is disadvantageous; merely, due to the fact that recorded measurements such as the height of trees, in dense forest areas, lack accuracy. Within such context, the authors of this study have presented a method of data processing in which an individual tree is isolated within forested areas through the use of LIDAR data and ortho-images. Such isolation resulted in the provision of more efficient and accurate data in regards to the height of trees. As for the data processing of LIDAR, the authors have generated a normalized digital surface model to extract tree points via local maxima filtering, and have additionally, with motives to extract forest areas, applied object oriented image classifications to the processing of data using ortho-images. The final tree point was then given a figure derived from the combination of LIDAR and ortho-images results. Based from an experiment conducted in the Yongin area, the authors have analyzed the merits and demerits of methods that either employ LIDAR data or ortho-images and have thereby obtained information of individual trees within forested areas by combining the two data; thus verifying the efficiency of the above presented method.

Comparative Validation of WindCube LIDAR and Remtech SODAR for Wind Resource Assessment - Remote Sensing Campaign at Pohang Accelerator Laboratory (풍력자원평가용 윈드큐브 라이다와 렘텍 소다의 비교.검증 - 포항가속기 원격탐사 캠페인)

  • Kim, Hyun-Goo;Chyng, Chin-Wha;An, Hae-Joon;Ji, Yeong-Mi
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • The remote-sensng campaign was performed at the Pohang Accelerator Laboratory where is located in a basin 6km inland from Yeongil Bay. The campaign aimed uncertainty assessment of Remtech PA0 SODAR through a mutual comparison with WindCube LIDAR, the remote-sensing equipment for wind resource assessment. The joint observation was carried out by changing the setup for measurement heights three times over two months. The LIDAR measurement was assumed as the reference and the uncertainty of SODAR measurement was quantitatively assessed. Compared with LIDAR, the data availability of SODAR was about half. The wind speed measurement was fitted to a slope of 0.94 and $R^2$ of 0.79 to the LIDAR measurement. However, the relative standard deviation was about 17% under 150m above ground level. Therefore, the Remtech PA0 SODAR is judged to be unsuitable for the evaluation of wind resource assessment and wind turbine performance test, which require accuracy of measurement.

Design and Implementation of Vibration Isolation System for Mobile Doppler Wind LIDAR

  • Song, Xiaoquan;Chen, Chao;Liu, Bingyi;Xia, Jinbao;Stanic, Samo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.103-108
    • /
    • 2013
  • The operation of a Doppler wind LIDAR in a mobile environment is very sensitive to shocks and vibrations, which can cause critical failures such as misalignment of the optical path and damage to optical components. To be able to stabilize the LIDAR and to perform wind field measurements in motion, a shock absorption and vibration isolation system was designed and implemented. The performance of the vehicle-mounted Doppler wind LIDAR was tested in motion, first in a circular test route with a diameter of about 30 m and later in regular expressway traffic. The vibration isolation efficiency of the system was found to be higher than 82% in the main vibration area and shock dynamic deflection was smaller than maximal deflection of the isolator. The stability of the laser locking frequency in the same mobile environment before and after the vibration isolation system installation was also found to be greatly improved. The reliability of the vibration isolation system was confirmed by good results of the analysis of the LIDAR data, in particular the plane position indicator of the line of sight velocity and the wind profile.

3D Road Modeling using LIDAR Data and a Digital Map (라이다데이터와 수치지도를 이용한 도로의 3차원 모델링)

  • Kim, Seong-Joon;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.165-173
    • /
    • 2008
  • This study aims at generating automatically three dimensional geometric models of roads using LIDAR data and a digital map. The main processes in the proposed method are (1) generating a polygon encompassing a road region using a road layer from the digital map, (2) extracting LIDAR points within the road region using the polygon, (3) organizing the points into surface patches and grouping the patches into surface clusters, (4) searching the road surface clusters and generating the surface model from the points linked to the clusters, (5) refining the boundary using a digital map. By applying the proposed method to real data, we successfully generated the linear and surface information of the roads.

Analysis on Wind Profile Characteristics in a Sublayer of Atmospheric Boundary Layer over a Semi-Complex Terrain - LIDAR Remote Sensing Campaign at Pohang Accelerator Laboratory (준복잡지형 대기경계층 저층 풍속분포 특성분석 - 포항가속기 라이다 원격탐사 캠페인을 중심으로)

  • Kim, Hyun-Goo
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.145-152
    • /
    • 2012
  • The mean wind speed and turbulence intensity profiles in the atmospheric boundary layer were extracted from a LIDAR remote sensing campaign in order to apply for CFD validation. After considering the semi-steady state field data requirements to be used for CFD validation, a neutral atmosphere campaign period, in which the main wind direction and the power-law exponent of the wind profile were constantly maintained, was chosen. The campaign site at the Pohang Accelerator Laboratory, surrounded by 40~50m high hills, with an apartment district spread beyond the hills, is to be classified as a semi-complex terrain. Nevertheless, wind speed profiles measured up to 100m above the ground fitted well into a theoretical-experimental logarithmic-law equation. The LIDAR remote-sensing data of the sub-layer of the atmospheric boundary layer has been proven to be superior to the data obtained by conventional extrapolation of the wind profile with 2 or 3 anemometer measurements.

Simplification of LIDAR Data for Building Extraction Based on Quad-tree Structure

  • Du, Ruoyu;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.355-356
    • /
    • 2011
  • LiDAR data is very large, which contains an amount of redundant information. The information not only takes up a lot of storage space but also brings much inconvenience to the LIDAR data transmission and application. Therefore, a simplified method was proposed for LiDAR data based on quad-tree structure in this paper. The boundary contour lines of the buildings are displayed as building extraction. Experimental results show that the method is efficient for point's simplification according to the rule of mapping.