• Title/Summary/Keyword: lidar data

Search Result 340, Processing Time 0.024 seconds

Fabrication of Three-Dimensional Scanning System for Inspection of Mineshaft Using Multichannel Lidar (다중채널 Lidar를 이용한 수직갱도 조사용 3차원 형상화 장비 구현)

  • Soolo, Kim;Jong-Sung, Choi;Ho-Goon, Yoon;Sang-Wook, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.451-463
    • /
    • 2022
  • Whenever a mineshaft accidentally collapses, speedy risk assessment is both required and crucial. But onsite safety diagnosis by humans is reportedly difficult considering the additional risk of collapse of the unstable mineshaft. Generally, drones equipped with high-speed lidar sensors can be used for such inspection. However, the drone technology is restrictively applicable at very shallow depth, failing in mineshafts with depths of hundreds of meters because of the limit of wireless communication and turbulence inside the mineshaft. In previous study, a three-dimensional (3D) scanning system with a single channel lidar was fabricated and operated using towed cable in a mineshaft to a depth of 200 m. The rotation and pendulum movement errors of the measuring unit were compensated for by applying the data of inertial measuring unit and comparing the similarity between the scan data of the adjacent depths (Kim et al., 2020). However, the errors grew with scan depth. In this paper, a multi-channel lidar sensor to obtain a continuous cross-sectional image of the mineshaft from a winch system pulled from bottom upward. In this new approach, within overlapped region viewed by the multi-channel lidar, rotation error was compensated for by comparing the similarity between the scan data at the same depth. The fabricated system was applied to scan 0-165 m depth of the mineshaft with 180 m depth. The reconstructed image was depicted in a 3D graph for interpretation.

Parameter Recovery for LIDAR Data Calibration Using Natural Surfaces

  • Lee Impyeong;Moon Jiyoung;Kim Kyoung-ok
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.642-645
    • /
    • 2004
  • This paper focuses on recovering systematic biases during LIDAR calibration, particularly using natural surfaces as control features. Many previous approaches have utilized all the points overlapping with the control features and often experienced with an inaccurate value converged with a poor rate due to wrong correspondence in pairing a point and the corresponding control features. To overcome these shortcomings, we establish a preventive scheme to select the pairs of high confidence, where the confidence value is based on the error budget associated with the point measurement and the linearity and roughness of the control feature. This approach was then applied to calibraring the LIDAR data simulated with the given systematic biases. The parameters were successfully recovered using the proposed approach with the accuracy and convergence rate superior to those using the previous approaches.

  • PDF

A Study on the Stability Analysis of Underground Mine using LIDAR (LIDAR를 활용한 지하광산의 안정성 분석에 관한 연구)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Jin, Yeon-Ho;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.406-421
    • /
    • 2017
  • This study describes a precise numerical analysis process by adopting the real image of mine openings obtained by LIDAR, which can produce a point cloud data by measuring the target surface numerically. Research area is a section of underground limestone mine which is used hybrid room-and-pillar method for improving the production rate. From the application of LIDAR to this section several results were deduced, that is, the central axis of upper and lower vertical safety pillars is distorted to the direction of NW and the section area of lower vertical safety pillar is $34m^2$ smaller than the designed area of $100m^2$. The results of precise measurement in geometrical shape of mine openings and precise simulation in numerical analysis confirms that LIDAR techniques can be suggested as a valuable tool for stability analysis in underground mine by configuring the mine opening shape.

Characteristics of Airborne Lidar Data and Ground Points Separation in Forested Area (산림지역에서의 항공 Lidar 자료의 특성 및 지면점 분리)

  • Yoon, Jong-Suk;Lee, Kyu-Sung;Shin, Jung-Il;Woo, Choong-Shik
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.533-542
    • /
    • 2006
  • Lidar point clouds provide three dimensional information of terrain surface and have a great advantage to generate precise digital elevation model (DEM), particularly over forested area where some laser signals are transmitted to vegetation canopy and reflected from the bare ground. This study initially investigates the characteristics of lidar-derived height information as related to vertical structure of forest stands. Then, we propose a new filtering method to separate ground points from Lidar point clouds, which is a prerequisite process both to generate DEM surface and to extract biophysical information of forest stands. Laser points clouds over the forest stands in central Korea show that the vertical distribution of laser points greatly varies by the stand characteristics. Based on the characteristics, the proposed filtering method processes first and last returns simultaneously without setting any threshold value. The ground points separated by the proposed method are used to generate digital elevation model, furthermore, the result provides the possibilities to extract other biophysical characteristics of forest.

Detection of Forest Areas using Airborne LIDAR Data (항공 라이다데이터를 이용한 산림영역 탐지)

  • Hwang, Se-Ran;Kim, Seong-Joon;Lee, Im-Pyeong
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.23-32
    • /
    • 2010
  • LIDAR data are useful for forest applications such as bare-earth DEM generation for forest areas, and estimation of tree height and forest biomass. As a core preprocessing procedure for most forest applications, this study attempts to develop an efficient method to detect forest areas from LIDAR data. First, we suggest three perceptual cues based on multiple return characteristics, height deviation and spatial distribution, being expected as reliable perceptual cues for forest area detection from LIDAR data. We then classify the potential forest areas based on the individual cue and refine them with a bi-morphological process to eliminate falsely detected areas and smoothing the boundaries. The final refined forest areas have been compared with the reference data manually generated with an aerial image. All the methods based on three types of cues show the accuracy of more than 90%. Particularly, the method based on multiple returns is slightly better than other two cues in terms of the simplicity and accuracy. Also, it is shown that the combination of the individual results from each cue can enhance the classification accuracy.

Building Boundary Extraction of Airborne LIDAR data by Image-Based and Point-Based Data Analysis (영상 및 점기반 자료처리에 의한 항공 라이다 자료의 건물경계추출)

  • Kim, Eui-Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.43-52
    • /
    • 2009
  • LIDAR data, as the source of the 3D information of buildings, are used many modeling fields such as three-dimensional city models in urban planning and the visibility analysis of buildings. This study suggests a methodology, that is characterized by combining image-based and point-based process, for minimizing the user's intervention and automatically extracting building boundary only using the LIDAR data. Image processing methodology is firstly used to separate building and non-building regions from LIDAR data. Moreover, building regions are then classified main roof into remaining parts by the statistical analysis of height values, and the remaining parts are processed separately. Through the experimental results of study areas which exist many types of buildings, for example, apartment-type, stair-type, complex-type, etc. Approximately 90% building boundaries are automatically extracted by the proposed methodology.

  • PDF

Precise Modeling of Buildings Using a Terrestrial LIDAR (지상 라이다를 이용한 건물의 정밀 모델링)

  • 이임평;최윤수;사석재;오의종
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.491-500
    • /
    • 2004
  • As the applications of 3D GIS rapidly increase, the need for acquisition and continuos update of urban models is increasingly emphasized. Particularly, building models has been considered as the most crucial component of urban models. Many researchers thus have focused on building extraction from mainly aerial photos or airborne LIDAR data but so far mostly failed to achieve satisfactory results in terms of both completeness and precision because of the intrinsic limitation of the sensory data themselves. Therefore, instead of the airborne sensors, we utilize a terrestrial LIDAR to generate precise and complete building models. This paper presents the overview of the sensors for data acquisition, describes data processing methods for building modelling from the acquired data and summerizes the experimental results.

  • PDF

Generation of True-Orthphotos using a LIDAR DSM (라이다 DSM을 이용한 엄밀정사영상 제작)

  • Park, Sun-Mi;Lee, Im-Pyeong;Cho, Seong-Kil;Min, Seong-Hong;Oh, So-Jung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.273-276
    • /
    • 2007
  • In this study, we generated DSM(Digital Surface Model)s and orthophotos with both LIDAR data and scanned aerial photos and compared them with those generated from only the scanned photos. We checked the relief displacements of buildings appearing in the generated orthophotos, where the displacement should not be exist in a true-orthophoto. The RMSE of the relief displacement in the orthophoto generated using a LIDAR DSM is 3 m while the RMSE in the orthophotos from a DSM based on the image matching is 6.1 m. It was revealed that the orthophoto from a LIDAR DSM are closer to a true-orthophoto. But the results in the accuracy test and similarity evaluation of the generated orthophotos were contrary to former results because the roof texture of buildings were expanded to occlusion areas around the buildings. With the central area of the photo, we can generate sufficiently accurate true-orthophotos using a LIDAR DSM.

  • PDF

3D Modelling of Steep Rock Face by Terrestrial Scanning LiDAR (지상 Scanning LiDAR에 의한 암사면의 3차원 모델링)

  • Lee, Yong-Chang
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.93-96
    • /
    • 2007
  • LIDAR is a relatively new technological tool that can be used to accurately georeference terrain features, and also is becoming an important 3D mapping tool in GIS. In this study it is described the capabilities of terrestrial LIDAR that was used to build a 3D terrain model of extremely steep rock face, along with the useful data and examples of contributions terrestrial lidar has made to outcrop studies. For this, High-resolution terrestrial lidar acquisition, processing, interpretation are discussed and applied to mapping of geological surfaces in three dimensions. We expected that lidar is a tool with which we can improve our current field methods and quantify the observations geologists make.

  • PDF

Retrieval of Lidar Overlap Factor using Raman Lidar System (라만 라이다 시스템을 이용한 라이다 중첩함수 산출)

  • Noh, Young-M.;Muller, Detlef;Shin, Dong-Ho;Lee, Kyung-Hwa
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.450-458
    • /
    • 2009
  • The range-dependent overlap factor of a lidar system can be determined experimentally if a Raman backscatter signal by molecule is measured in addition to the usually observed elastic backscatter signal, which consists of a molecular component and a particle component. The direct determination of the overlap profile is presented and applied to a lidar measurement according to variation of telescope field-of-view and distance between telescope and transmitting laser. The retrieval of extinction coefficient by Raman method can generate high errors for heights below planetary boundary layer if the overlap effect is ignored. The overlap correction method presented here has been successfully applied to experimental data obtained in Gwangju, Korea.