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Abstract: This paper focuses on recovering systematic biases
during LIDAR calibration, particularly using natural surfaces
as control features. Many previous approaches have utilized all
the points overlapping with the control features and often ex-
perienced with an inaccurate value converged with a poor rate
due to wrong correspondence in pairing a point and the corre-
sponding control features. To overcome these shortcomings,
we establish a preventive scheme to select the pairs of high
confidence, where the confidence value is based on the error
budget associated with the point measurement and the linearity
and roughness of the control feature. This approach was then
applied to calibrating the LIDAR data simulated with the given
systematic biases. The parameters were successfully recovered
using the proposed approach with the accuracy and conver-
gence rate superior to those using the previous approaches.
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1. Introduction

The LIDAR system effectively produces the precise
coordinates of points sampled from the object surfaces.
It includes three main subsystems, GPS, INS, and a laser
ranging module that provide the position of the platform,
the attitude of the platform attitude, and the distance
from the platform to a target, respectively. These three
kinds of information are integrated to compute the coor-
dinates of a target point. These coordinates may include
systematic errors originated from various sources, for
examples, the systematic biases inherited from each sub-
system, and the integration biases produced from their
imperfect alignment [1-3]. The process to remove these
systematic errors, called calibration, is essential to pro-
duce more accurate coordinates.

A typical calibration process mainly involves model-
ing systematic errors with bias parameters introduced by
analyzing the error sources, and estimating the parame-
ters by comparing the points with given reference data
(or called control features). Estimating the parameters, so

called parameter recovery, often use surface patches ana-
Iytically described as control features, for example, [1-2].
However, such a process may fail to estimate a number
of parameters with reasonable accuracy since the pa-
rameters are usually highly correlated and it is difficult
to find sufficient number of independent analytical sur-
face patches. This brings the use of natural surfaces as
control features since they include planar patch of vari-
ous slopes and directions.

We proposed a robust method for parameter recovery
using natural surface as control features. The core of this
method is to employ a sophisticated selection scheme
that selects a portion of points that corresponds to given
control features with high confidence. This selection is
based on the error budget associated with the point
measurement and the linearity and roughness of the con-
trol feature. This paper describes the proposed method
with theoretical background and mathematical derivation,
introduces experimental results from its application to
simulated data, conclude with summary and comment.

2. Theory and Method
1) Laser Equations

Laser equations are used to compute the 3D coordi-
nates of the point on a surface, which a laser pulse re-
flected from. A simplified one can be expressed as

p=P+R-ul, 1

where p’ and P’ denotes the locations of the point
and the platform, respectively. These are expressed as
3D vectors in a ground coordinate system. [’ denotes
the distance between the point and the platform. u de-
notes the direction from the platform to the point, ex-

pressed a 3D unit vector in the platform coordinate sys-
tem, which is related with the ground coordinate system

based on a rotational matrix, R'. The prime super-
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scripts indicate that the values are not true but observed
values, which may include some unknown systematic
and random errors. Each vector can be expressed as

x X' u,
p=y|, P=|Y|, u= u, . @
z' A u

If we assume that the observed values are affected
from systematic errors, the location of the point can be
calibrated using

p=(P +APY+(I;+AR)R -u-(I' + Al), 3)

where AP, Al, and AR denote the systematic bi-
ases associated with P, I', and R', respectively.
Each bias can be expressed with its elements as

AX 0 -Ax A¢
AP=|AY |, AR=| Ax 0 -~Aw 4
AZ -A¢p Aw 0

As Eq.(5) rearranged from Eq.(3), p includes two
parts, the observed value p and the update value Ap
based on the introduced biases. p is expressed as

Eq.(6).

p=p'+4p ®

x x' Ax
yi={y|+d ©

z z' Az
Ap=AP+ARR u-l'+ R -u-Al N

2) Observation Equations for Parameter Recovery

A set of control features is given as a 2D surface func-
tion expressed as
z=f(xy), )]
where this function can be constructed from a DEM,
TIN, or a set of surface points.

A perfectly calibrated point should be on the surface,
which presents a condition that its coordinates should
satisfy the given surface function. If we substitute x, y, z
in Eq.(8) with the calibrated coordinates in Eq.(6), we
acquire

2+ Az = f(x' +Ax, y' + Ay). ®)

If we assume that the updates originated from the sys-

tematic biases Ax, Ay, Az are small, Eq.(9) can be lin-

earized and rearranged as

g ¥

x o (10)

2'—f(x',y')=[ -1}'&7-

Here Ap is a function of the systematic biases as
shown in Eq.(7) and further arranged as

- -

AX
AY
100 0 R -RL, Ru]|AZ
ap=|0 1 0 —RL, 0 RL, Ru,||ao|(D
0 01 RL, —-RL, O Ru||Ap
Ax
M
where
RL, Ru,
Usul', |RL,{sR"-L, |Ru,|=R"u (12)
RL, Ru,

If we substitute Ap in Eq.(10) with Eq.(11), we ac-
quire an observation equation expressed as

(13)

vi=A4l+e, e~(0,00),

where y, A,, & are defined as Eq.(14). ¢, is a
random error associated with the equation where its
mean and variance are assumed as 0 and o , respec-

tively. Subscript % indicates that the equation is con-
structed from the k-th laser point. Each point usually a
different observation equation of a similar structure to

Eq.(13).

ye=2-f(x,5)
100 0 RL -RL Ru
A,{E[Qf— g ~] 01 0 —RL, O RL Ru, (14
x oy
001 RL -RL O Ru

E={AX AY AZ Aw Ap Ax A

If we have n number of laser points, we construct a set
of n number of observation equations,

y=Aé+e, e~(0,0¢l,), (15)
where y, 4, e are defined as Eq.(16) and e denote

the random errors associated with all equations and they
are assumed to be independent with the same variance.

Y A e
A e

y=|2 4= 7L e=|T7 a9
Vn A, €,
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3) Recursive Parameter Estimation

Parameter estimation is performed using a recursive
estimation process based on the linearized observation
equations in Eq.(15). The initial values for all the pa-
rameters are first assigned to zeroes and the parameters
are then estimated using the observation equations con-
structed with the initial values. These estimated parame-
ters are then used as the initial values for the next itera-
tion. This process continues if the updates for the pa-
rameters are negligible.

The main concerns of such a recursive estimation
process are dependence on the initial values, the accu-
racy of the converged values and the convergence rate.
These are all closely related to the validity of the lineari-
zation performed from Eq.(9) to produce the linearized
model in Eq.(10). The smaller the error associated with
this linearization, the better results from the recursive
process produced. Theoretically, these linearization er-
rors are then eliminated if the reference surface is per-
fectly planar. It is because the surface function in Eq.(10)
is then linear if the surface is a plane. However, natural

surfaces never be represented by an infinitely large plane.

We should consider the area and boundary of the surface
that can be represented as a plane with a reasonably
small roughness. The area should at least larger than an
uncertainty ellipse centering a laser point with the size
derived from a rough error budget about the coordinates
of the point. The roughness can also be used to a weight
for an observation equation, That is, the rougher surface,
the less weight is assigned. Consequently, only a portion
of laser points locating within the boundary of surfaces
reasonably approximated to planes are carefully selected
to construct the observation equations. Otherwise, this
recursive estimation process easily results in wrong con-
verged values with long iteration steps and heavy de-
pendence on initial values.

3. Experiment and Results

We applied the proposed method to various sets of
simulated data. To assess the accuracy of the recovered
parameters, we used simulated data instead of real data.
This section introduces a representative experiment by
describing the test data and the results from the applica-
tion of the proposed recovery method to the data.

1) Test Data

The test data were generated by simulating airborne
LIDAR survey over an area of natural surfaces [4]. The
topography of this area is given by a DEM, which retains
the grid interval of 10 m and covers an area of 1200 m
by 1200 m. As shown in Fig. 1, this area includes natural
surfaces of various slopes and roughness. A small por-
tion of this DEM is later used as reference data for cali-
bration, so called a control DEM. Table | summarizes
the operational parameters and Table 2 shows the sys-
tematic biases used for the simulation. Five data sets (or

strips) were generated with the given trajectories de-
scribed in Table 3. In total, the simulation generated
more than five million points as shown in Table 4. The
boundaries and trajectories of the data sets are visualized
with the control DEM in Fig. 2.
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Fig. 1: Area used for LIDAR data simulation.
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Table 1: Operational parameters of LIDAR simulation.

Platform velocity [m/s] 30
Pulse rate {kHz] 30
Scan rate [Hz] 50
Scan angle {deg] 20

Table 2: Systematic biases for LIDAR simulation.

GPS bias, x [m] aX 2
GPS bias, y [m] A4Y 1
GPS bias, z [m] AZ 0
INS bias, omega [deg] Ao | 0.1
INS bias, phi {deg] Ad 02
INS bias, kappa [deg] Ax 0
Range bias [m] Al 0.0

Table 3: Trajectories of simulated data sets.

Set trajectory begin trajectory end
X y z X y z
1 -500 | 300 | 1500 | 500 300 ( 1500
2 500 0 [ 1500 [ -500 011500
3 -500 | -300 | 1500 | 500 [ -300 [ 1500
4 150 | -550 | 1500 | 150 | 550 | 1500
5 -150 | 550 | 1500 | 150 ] -550 | 1500

Table 4: Simulation duration and number of points.

Set Duration {s] | No. points {s]
1 33.34 1000200

2 33.34 1000200

3 33.34 1000200

4 36.68 1100400

5 36.68 1100400
Total 173.38 5201400
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Fig. 2: Simulated data set and a control DEM.
2) Test Results

The proposed method is implemented as an object ori-
ented program using C++ with Standard Template Li-
brary. This program was applied to estimating the bias
parameters using the control DEM.

Among these points within the range of the control
DEM, we randomly selected 10 % of the points, that is,
9245 points. At each step, we computed the roughness of
the small local area centering each point and selected
only the points with the roughness values of less than +
0.4 m. In average, 8 to 10 % of the total points were ac-
tually selected as shown in Table 5.

Table 5: Number of points used for estmmation.

Iteration Total 1 2 3 4 5
No. points | 9245 | 756 | 877 | 873 | 874 | 874
Ratio [%] 100 82 (95194195 | 95

The iteration quickly converged. After each iteration
step, we updated the points with the estimated parame-
ters. In five steps, the RMS update decreased to +8.2e-9
m. Table 6 shows the bias parameters estimated by each
iteration step. It is shown that the parameters quickly
converge to the true values with acceptable tolerance.

Table 6: Parameters estimated at each iteration step.

Iteration A4X AY Aw Ap
1 2.1791 10.7295 | 0.1032 | 0.2109
2 1.9827 | 0.9711 | 0.1015 | 0.1989

3 1.9886 | 0.9668 | 0.1010 | 0.1991
4 1.9886 | 0.9671 | 0.1010 | 0.1991

5 1.9886 | 0.9671 | 0.1010 [ 0.1991
True | 2.0000 | 1.0000 | 0.1000 | 0.2000

The estimated parameters were then used to calibrate
the entire sets of more than five million points. The RMS
error that quantifies the difference between the observed
point and the corresponding error-free point can be com-
puted since the error-free points are known from the

simulation. The RMS errors were computed from each
set before and after calibration, as shown in Table 7.
After calibration, the data were refined with about + 1
cm in every direction. Particularly, even though set 3 has
no overlap with the control DEM, the RMS error of its
calibrated set is similar to other sets.

Table 7: RMS errors before and after calibration Cunit: m).

Set Before calibration After calibration
dx dy dz dx dy dz
1 2.346 | 3.171 | 0.219 | 0.007 | 0.010 | 0.010
2 12252 [3.123 | 0.213 | 0.007 | 0.011 | 0.010
3 2.027 | 3.004 | 0.203 | 0.006 | 0.012 | 0.009
4 12296 | 3.146 | 0.437 | 0.007 | 0.011 | 0.010
5 [2.141 [3.066 | 0.418 | 0.006 | 0.011 | 0.010

4. Conclusions

We have proposed a robust method to estimating sys-
tematic biases for LIDAR data calibration and verified
the method by applying it to calibrating the simulated
data. From the experimental results, we conclude that the
proposed method can recover the bias parameters with
acceptable errors within a few iteration steps, and the
calibration results based on the recovered parameters
shows the superior quality with respect to RMS errors.
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